
A Fast Implementation of Burg’s Method
Koen Vos

August, 2013

Abstract

In this paper we derive an efficient implementation
of the Burg method for maximum entropy spectral
analysis. The new algorithm has a complexity of
about Nm+5m2 multiplications, compared to 3Nm−
m2 for the conventional implementation, for data
length N and order m. The algorithm also allows
for straightforward regularization.

Introduction

Burg’s method for maximum entropy spectral analysis [1, 2]
is a popular tool in spectral estimation, speech process-
ing, radar, geophysics and other fields. It combines a high
prediction gain with poles that guarantee stable filters.

While the Burg method is typically described as directly
operating on time series data, it can also be formulated in
terms of autocorrelations, as this paper will show. In that
case, however, the correlations change between computing
reflection coefficients, and need to be adjusted to account
for what Burg calls ”end effects” [2]. Consequently, it is
not possible to express the Burg method in a single set of
equations akin to the Yule-Walker equations. Perhaps this
has hindered application of techniques for efficient inversion
of close-to-Toeplitz matrices to Burg’s method, where such
techniques have previously been used for the covariance
method [3] and forward-backward prediction [4].

This paper derives an implementation of Burg’s method
in terms of autocorrelations, and shows how properties of
the correlation matrix enable a fast implementation. We
first describe the conventional Burg method before going
into the details of the new method.

The Burg Method

Burg’s method conventionally operates on the time series
data, in iterations. Iteration i finds a reflection coefficient, ki,
minimizing forward and backward prediction error vectors
fi and bi

1. Below we show Burg’s method in its basic form.

1Bold lower-case letters indicate column vectors, capitals represent
matrices, and (·)∗ denotes complex conjugation.

Algorithm 1: Conventional Burg Method

For an input signal x0, x1, . . . , xN−1, compute the m reflec-
tion coefficients as follows:

0. Initialization

i = 0 (1)

f ′0 = b′0 = [x0, x1, . . . , xN−1]T . (2)

1. Remove the first element of f ′i and last element of b′i

fi = f ′i(1 : N − i− 1) (3)

bi = b′i(0 : N − i− 2). (4)

2. Calculate the reflection coefficient

ki = − 2bH
i fi

fHi fi + bH
i bi

. (5)

3. if (i == m)

Finished

endif

4. Update the prediction errors

f ′i+1 = fi + kibi (6)

b′i+1 = bi + k∗i fi. (7)

5. Increment iteration counter: i = i + 1

6. Back to step (1).

The choice of the reflection coefficient in (5) minimizes
the resulting combined forward/backward prediction error
energy f ′Hi+1f

′
i+1 + b′Hi+1b

′
i+1. This lets us use the orthog-

onality principle to find an efficient recursion [5] for the
denominator in Eq. (5)

deni ≡ fHi fi + bH
i bi (8)

= f ′Hi f ′i + b′Hi b′i

− |f ′i(0)|2 − |b′i(N − i− 1)|2 (9)

= (1− |ki−1|2)deni−1

− |f ′i(0)|2 − |b′i(N − i− 1)|2. (10)

c©2013 Koen Vos. This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0

Page 1 of 3

Although not used in the Burg method itself, predic-
tion error coefficients ai can be found from the reflection
coefficients using the Levinson recursion [6]

ai+1 =

[
ai

0

]
+ kiJ

[
a∗i
0

]
, (11)

initialized as a0 = 1, and where we introduced the exchange
matrix

J =

0 · · · 0 1
... . .

.
1 0

0 . .
.

. .
. ...

1 0 · · · 0

 , (12)

which flips the vector or matrix to its right upside down (or,
that to its left, horizontally). The size of J is (i+1)× (i+1)
and presumed clear from the context.

Fast Implementation
We now derive an implementation of Burg’s method that op-
erates on the forward-backward correlation matrix without
explicitly calculating the forward/backward prediction error
vectors. Since the method is order recursive, the deriva-
tion expresses variables in terms of the previous iteration’s
outcome. We begin by stacking the time series data in an
(N − i)× (i + 1) Toeplitz matrix

Xi =

xi xi−1 · · · x0

xi+1 xi · · · x1

...
...

. . .
...

xN−1 xN−2 · · · xN−i−1

 . (13)

Note that Xi grows one wider and shorter with every itera-
tion, which is one of the defining characteristics of Burg’s
method. Given prediction error coefficients ai, we obtain
the Burg forward and conjugate backward prediction errors
fi and b∗i[

fi+1

b∗i+1

]
=

[
Xi+1

X∗i+1J

]
ai+1 (14)

=

[
Xi+1

X∗i+1J

] [
ai

0

]
+ ki

[
Xi+1J
X∗i+1

] [
a∗i
0

]
, (15)

where the second equality comes from the Levinson recursion
(11) and the fact that J2 = I. Minimizing the energy of the
left-hand vector with respect to ki gives the solution

ki = −

[
aH
i 0

]
(XH

i+1Xi+1J + JXT
i+1X

∗
i+1)

[
a∗i
0

]
[
aT
i 0

]
(JXH

i+1Xi+1J + XT
i+1X

∗
i+1)

[
a∗i
0

] (16)

= −

[
aH
i 0

]
JRi+1

[
a∗i
0

]
[
aT
i 0

]
Ri+1

[
a∗i
0

] , (17)

where we defined the forward-backward correlation matrix

Ri ≡ JXH
i XiJ + XT

i X
∗
i . (18)

This correlation matrix is persymmetric and Hermitian, i.e.,
JRiJ = RT

i = R∗i . These properties, together with the
observation that the upper-left i × i submatrix of Ri can
be expressed as Ri−1 plus a rank-2 update ∆Ri, enable the
following recursion

gi ≡ Ri+1

[
a∗i
0

]
(19)

=

[
Ri + ∆Ri+1

rTi+1

]
a∗i (20)

=

Ri

([
a∗i−1

0

]
+ k∗i−1J

[
ai−1

0

])
+ ∆Ri+1a

∗
i

rTi+1a
∗
i

 (21)

=

[
gi−1 + k∗i−1Jg∗i−1 + ∆Ri+1a

∗
i

rTi+1a
∗
i

]
, (22)

where the rank-2 update matrix is given by

∆Ri+1 = −

xi

...
x0

 [x∗i · · · x∗0
]

−

x
∗
N−i−1

...
x∗N−1

 [xN−i−1 · · · xN−1
]
. (23)

Note that the product ∆Ri+1a
∗
i can be computed with

4(i+1) multiplications by first calculating the inner products
of the row vectors in Eq. (23) with a∗i . The vector rTi+1

contains the first i+ 1 elements of the last row of Ri+1, and
satisfies the recursion

ri+1 =

2ci+1

ri −

 x0

...
xi−1

x∗i −

x
∗
N−1
...

x∗N−i

xN−i−1

 , (24)

which uses the autocorrelation

ci =
[
x0 · · · xN−i−1

] x∗i
...

x∗N−1

 . (25)

The above recursions let us write the fast Burg algorithm
as follows.

c©2013 Koen Vos. This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0

Page 2 of 3

Algorithm 2: Fast Burg Method

For an input signal x0, x1, . . . , xN−1, compute the m re-
flection coefficients and prediction error coefficients am as
follows:

0. Initialization

For j = 0 : m

cj =
[
x0 · · · xN−j−1

] x∗i
...

x∗N−1

 (26)

End

i = 0 (27)

a0 = 1 (28)

g0 =

[
2c0 − |x0|2 − |xN−1|2

2c1

]
(29)

r1 = 2c1 (30)

1. Compute the reflection coefficient

ki = −
[
aH
i 0

]
Jgi[

aT
i 0

]
gi

(31)

2. Update the prediction coefficients

ai+1 =

[
ai

0

]
+ kiJ

[
a∗i
0

]
(32)

3. Increment the iteration counter: i = i + 1

4. if (i == m)

Finished

endif

5. Update ri+1: Eq. (24).

6. Compute ∆Ri+1a
∗
i : Eq. (23).

7. Update gi: Eq. (22).

8. Back to step (1).

Complexity
The number of complex multiplications in the algorithm
above is approximately Nm+5m2, for data of length N and
prediction order m. Most of the computational work goes
into calculating the autocorrelations (26); the remaining
operations are on short vectors of size equal to the iteration
number plus one. In contrast, the conventional Burg method
updates and correlates forward and backward prediction
error vectors of size (near) N in each iteration. This leads
to approximately 3Nm − m2 multiplications. The new
algorithm thus reduces complexity whenever m < N/3,

which is the typical case. For example, a 16th order analysis
of a 20 ms speech frame sampled at 16 kHz uses about
15100 multiplications for the standard method, and 6400
for the new one. For long data sets and high filter orders,
the complexity can be reduced further by computing the
autocorrelations with the Fast Fourier Transform. This
brings the complexity down to order O(NlogN + m2).

Regularization
Since the new method operates on autocorrelations, it is
trivial to add a regularization coefficient by multiplying the
zero-lag autocorrelation c0, defined in Eq. (26), with a value
slightly larger than one. Such regularization is known as
Tikhonov regularization in general least-squares problems,
and has the effect of adding a white noise floor to the data.
This improves numerical stability and reduces fluctuations
in the prediction coefficients.

Conclusion
We derived a new implementation of the Burg method
that in typical applications requires fewer operations. The
implementation is used in the SILK speech codec [7] and
the Opus speech and audio codec [8].

References
[1] J. P. Burg, ”Maximum Entropy Spectral Analysis,”

presented at the 37th Annual International Meeting,
Soc. of Explor. Geophysics, Oklahoma, Oct. 1967.

[2] J. P. Burg, ”Maximum Entropy Spectral Analysis,”
PhD thesis, Stanford University, 1975. Available from
http://sepwww.stanford.edu/theses/sep06/

[3] M. Morf, et al. ”Efficient solution of covariance equa-
tions for linear prediction.” Acoustics, Speech and Sig-
nal Processing, IEEE Transactions on 25.5: 429-433,
1977.

[4] L. Marple Jr, ”A new autoregressive spectrum analysis
algorithm.” Acoustics, Speech and Signal Processing,
IEEE Transactions on 28.4: 441-454, 1980.

[5] N. Andersen. ”Comments on the performance of max-
imum entropy algorithms.” Proceedings of the IEEE
66.11: 1581-1582, 1978.

[6] N. Levinson, ”The Wiener RMS error criterion in fil-
ter design and prediction.” J. Math. Phys., v. 25, pp.
261278, 1947.

[7] http://en.wikipedia.org/wiki/SILK

[8] http://www.opus-codec.org

c©2013 Koen Vos. This work is licensed under a Creative Commons Attribution 3.0 Unported License.
http://creativecommons.org/licenses/by/3.0

Page 3 of 3

