Opus
1.6

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen 1.9.8

Mon Dec 15 2025 12:54:10

1 Opus 1
2 Topic Index 3
2.1 TOPICS . . o e e e e e 3

3 File Index 5
B File List e 5

4 Topic Documentation 7
41 0pus Encoder L e 7
4.1.1 Detailed Description e 8

4.1.2 Typedef Documentation L L 9

4121 0pusEncoder 9

4.1.3 Function Documentation e 9
4.1.3.10pus_encode() 9
4.1.3.20pUs_€NnCOOE24() i e 10
4.1.3.30pus_encode float() 10
4.1.3.40pus_encoder_create()o e e 11
4.1.3.50pus_encoder_cCtl() 12

4.1.3.6 opus_encoder_destroy() 12
4.1.3.70pus_encoder_get_size() 12
4.1.3.80pus_encoder_init() e e 13

420pus Decoder e 14
4.2.1 Detailed Description L e 15

4.2.2 Typedef Documentation L 16

4221 0pusDecoder e 16
42220pUSDRED oo 17

4.2.2.3 0OpusDREDDecoder e 17

4.2.3 Function Documentation e e 17
4.23.10pus_decode() e 17
4.23.20pus_decode24() e 18
4.2.3.30pus_decode float() 18
4.2.3.40pus_decoder_create() i e 19
4.23.50pus_decoder ctl() 19

4.2.3.6 opus_decoder_destroy() 20

4.2.3.7 opus_decoder_dred_decode() 20

4.2.3.8 opus_decoder_dred_decode24() 21

4.2.3.9 opus_decoder_dred_decode_float() L. 21

4.2.3.10 opus_decoder_get_nb_samples()o 22

4.2.3.11 opus_decoder_get_size() 22

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2.3.120pus_decoder_init() e 23

42313 0pus_dred_alloc() 23
4.2.3.14 opus_dred_decoder_create() 24
4.2.3.150pus_dred_decoder_ctl() 24
4.2.3.16 opus_dred_decoder_destroy() 24
4.2.3.17 opus_dred_decoder_get_size() 25
4.2.3.18 opus_dred_decoder_init() 25
4.23.190pus_dred_free() 25
4.23.200pus_dred_get_size() 25
4.23.21 opus_dred_parse() e 26
4.2.3.220pus_dred_process()o i i e 26
4.2.3.23 opus_packet_get_bandwidth() oo oo 27
4.2.3.24 opus_packet_get_ nb_channels() Lo 27
4.2.3.25 opus_packet_get_nb_frames() 28
4.2.3.26 opus_packet_get_nb_samples() 28
4.2.3.27 opus_packet_get_samples_per_frame() 29
4.23.28 opus_packet_has_lbrr() 29
4.2.3.29 opus_packet_parse() e 30
4.2.3.30 opus_pcm_soft_clip() 30

4.3 Repacketizer e e e e 31
4.3.1 Detailed Description e e 32
4.3.2 Typedef Documentation L e e e 33
4.3.2.1 OpusRepacketizer 33

4.3.3 Function Documentation L e 33
4.3.3.1 opus_multistream_packet_pad() 33

4.3.3.2 opus_multistream_packet_unpad() 34
4.3.3.30pus_packet_pad() e e 35
4.3.3.40pus_packet_unpad() 35
4.3.3.50pus_repacketizer_cat() 36

4.3.3.6 opus_repacketizer_create() 37

4.3.3.7 opus_repacketizer_destroy() 37

4.3.3.8 opus_repacketizer_get_nb_frames() Lo 37

4.3.3.9 opus_repacketizer_get_size() 38
4.3.3.10 opus_repacketizer_init() L 38
4.3.3.11 opus_repacketizer_out() L 38
4.3.3.12 opus_repacketizer_out_range()o 39

44 Ermorcodes e e 40
4.41 Detailed Description e e e 40
4.4.2 Macro Definition Documentation L 40

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4421 0PUS_ALLOC_FAIL 40
44220PUS BAD ARG o 41

4423 0PUS_BUFFER_TOO_SMALL e e 41

4424 0PUS_INTERNAL_ERROR e 41
4.4.250PUS_INVALID _PACKET it e e e e e e e 41

4426 OPUS_INVALID_STATE e e e e e e 41

4427 0PUS_OK 41

4428 0OPUS_UNIMPLEMENTED e e e e e e 41

4.5 Pre-defined values for CTL interface e 42
4.5.1 Detailed Description e e e e 43
4.5.2 Macro Definition Documentation L 43
4521 OPUS_APPLICATION_AUDIO e e e e 43

4.5.2.2 OPUS_APPLICATION_RESTRICTED_CELT 43

4.5.2.3 OPUS_APPLICATION_RESTRICTED_LOWDELAY 43

4.5.2.4 OPUS_APPLICATION_RESTRICTED_SILK 43
45250PUS_APPLICATION_VOIP e s 44

4526 0PUS_AUTO o e e 44

4527 OPUS_BANDWIDTH_FULLBAND e 44

4.5.2.8 OPUS_BANDWIDTH_MEDIUMBAND it et 44

4529 OPUS_BANDWIDTH_NARROWBAND e 44
45210 OPUS_BANDWIDTH_SUPERWIDEBAND 44
45211 OPUS_BANDWIDTH_WIDEBAND it it 44
45212 OPUS_BITRATE_MAX e e e e e 45
45213 OPUS_FRAMESIZE_100_MS 45
45214 OPUS_FRAMESIZE_10_MS e 45
45215 0PUS_FRAMESIZE_120_MS 45
45216 OPUS_FRAMESIZE_20_ MS e 45
45217 0PUS_FRAMESIZE_ 2 5 MS e 45
45218 OPUS_FRAMESIZE_40_MS 45
45219 0PUS_FRAMESIZE_ 5 MS e 46
45220 OPUS_FRAMESIZE_60_ MS e 46
45221 OPUS_FRAMESIZE_80_MS 46
45222 OPUS_FRAMESIZE_ARG i 46
45223 0PUS_SIGNAL_MUSIC e e 46
45224 OPUS_SIGNAL_VOICE e 46

4.6 Encoderrelated CTLS 0 i e 46
4.6.1 Detailed Description e e e 48
4.6.2 Macro Definition Documentation 49
4.6.2.1 OPUS_GET_APPLICATION e e e e 49

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6.220PUS_GET_BITRATE 49

4.6.2.3 OPUS_GET_COMPLEXITY e e e 49
4.6.2.4 OPUS_GET_DRED_DURATION e e e e e 50
4.6.250PUS_GET_DTX o e e 50
4.6.2.6 OPUS_GET_EXPERT_FRAME_DURATION 50
4.6.2.7 OPUS_GET_FORCE_CHANNELS e 51
4.6.28 OPUS_GET_INBAND_FEC i e 51
4.6.29 OPUS_GET_LOOKAHEAD e e e e e e e e 52
4.6.210 OPUS_GET_LSB_DEPTH i e 52
4.6.211 OPUS_GET_MAX_BANDWIDTH it 53
4.6.2120PUS_GET PACKET _LOSS_PERC i it 53
4.6.213 OPUS_GET_PREDICTION_DISABLED 54
46214 OPUS_GET_QEXT e e e 54
4.6.2150PUS_GET_SIGNAL e 54
46216 OPUS_GET_VBR 55
4.6.217 OPUS_GET_VBR_CONSTRAINT i 55
4.6.218 OPUS_SET _APPLICATION o e e e e e e e e 55
4.6.219 OPUS_SET_BANDWIDTH i e 56
4.6.220 OPUS_SET BITRATE o e e e e e e e 57
4.6.2.21 OPUS_SET_COMPLEXITY e e e e e e e 57
4.6.2220PUS_SET_DNN_BLOB e 57
4.6.223 OPUS_SET _DRED_DURATION it e 58
4.6.224 OPUS_SET_DTX e e e e e 58
4.6.2.25 OPUS_SET_EXPERT_FRAME_DURATION 58
4.6.2.26 OPUS_SET FORCE_CHANNELS i 59
4.6.227 OPUS_SET_INBAND_FEC e e 60
4.6.228 OPUS_SET_LSB_DEPTH it 60
4.6.2.29 OPUS_SET MAX_BANDWIDTH it e 61
4.6.2.30 OPUS_SET_PACKET_LOSS_PERC ittt 61
4.6.2.31 OPUS_SET_PREDICTION_DISABLED 62
4.6.2320PUS_SET QEXT e e e e 62
4.6.2330PUS_SET_SIGNAL e 62
4.6.234 OPUS_SET_VBR 63
4.6.2.35 0PUS_SET VBR_CONSTRAINT e e e e 63
4.7 Generic CTLS o o o e 65
4.7.1 Detailed Description e e 65
4.7.2 Macro Definition Documentation L 66
4721 0PUS_GET_BANDWIDTH e e 66
4.7220PUS_GET_FINAL_RANGE e e 66

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

47230PUS_GET_IN_DTX e e e e e 67
4.7.2.4OPUS_GET_PHASE_INVERSION_DISABLED 67
4.7250PUS_GET_SAMPLE_RATE e 67

4726 OPUS_RESET _STATE e e e e e 68

4.7.2.7 OPUS_SET_PHASE_INVERSION_DISABLED 68

4.8 Decoderrelated CTLs e 68
4.8.1 Detailed Description e 69
4.8.2 Macro Definition Documentation L L 69
4821 0PUS_GET_GAIN 69

4.8.22 OPUS_GET_IGNORE_EXTENSIONS 69

4.8.2.3 OPUS_GET_LAST_PACKET_DURATION i 70

4824 0PUS_GET_OSCE_BWE e e e 70
48250PUS_GET_PITCH e 70

4.8.2.6 OPUS_SET_GAIN e e e 70

4.8.2.7 OPUS_SET_IGNORE_EXTENSIONS 71
482.80PUS_SET_OSCE_BWE i e e e 71

4.9 Opus library information functions L 71
4.9.1 Detailed Description e 71
4.9.2 Function Documentation L L e e 71
4.9.2.1 opus_get_version_string() 71
4.9.220pUS_SIrerror() e 72

4.10 Multistream specific encoder and decoder CTLs o o 72
4.10.1 Detailed Description e e 72
4.10.2 Macro Definition Documentation 73
4.10.2.1 OPUS_MULTISTREAM_GET_DECODER_STATE 73

4.10.2.2 OPUS_MULTISTREAM_GET_ENCODER_STATE 73

4.11 Opus Multistream APL o L e e 73
4.11.1 Detailed Description L 75
4.11.2 Typedef Documentation L 76
4.11.2.1 OpusMSDecoder e e 76
4.11.220pusMSEncoder 76

4.11.3 Function Documentation L 76
4.11.3.1 opus_multistream_decode() 76

4.11.3.2 opus_multistream_decode24() 77

4.11.3.3 opus_multistream_decode_float() o 77

4.11.3.4 opus_multistream_decoder_create()o 78

4.11.3.5 opus_multistream_decoder_ctl() 79

4.11.3.6 opus_multistream_decoder_destroy()o 79

4.11.3.7 opus_multistream_decoder_get_size() Lo o 79

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

vi

4.11.3.8 opus_multistream_decoder_init() o 80
4.11.3.9 opus_multistream_encode() 81
4.11.3.10 opus_multistream_encode24() 81
4.11.3.11 opus_multistream_encode_float() L 82
4.11.3.12 opus_multistream_encoder_create()o oo 83
4.11.3.13 opus_multistream_encoder_ctl() o 83
4.11.3.14 opus_multistream_encoder_destroy() o o 84
4.11.3.15 opus_multistream_encoder_get_size() o o 84
4.11.3.16 opus_multistream_encoder_init() o 85
4.11.3.17 opus_multistream_surround_encoder_create() L. 86
4.11.3.18 opus_multistream_surround_encoder_get_size() 86
4.11.3.19 opus_multistream_surround_encoder_init() 86

412 0pus CUSIOM . . . L o L e e e 86
4.12.1 Detailed Description 88
4.12.2 Typedef Documentation e e 88
4.12.2.1 OpusCustomDecoder o i e e 88
4.12.2.2 OpusCustomEncoder e 88
41223 0pusCustomMode e 89

4.12.3 Function Documentation L 89
4.12.3.1 opus_custom_decode() 89
4.12.3.2 opus_custom_decode24() 89
4.12.3.3 opus_custom_decode_float() 90
4.12.3.4 opus_custom_decoder_create() 90
4.12.3.50pus_custom_decoder_Ctl() 91
4.12.3.6 opus_custom_decoder_destroy()o 91
4.12.3.7 opus_custom_decoder_get_size()o 91
4.12.3.8 opus_custom_decoder_init() 92
4.12.3.9 opus_custom_encode() 92
4.12.3.10 opus_custom_encode24() e e 93
4.12.3.11 opus_custom_encode_float() 93
4.12.3.12 opus_custom_encoder_create() 94
4.12.3.13 opus_custom_encoder ctl() 95
4.12.3.14 opus_custom_encoder_destroy()o 95
4.12.3.15 opus_custom_encoder_get_size()o 95
4.12.3.16 opus_custom_mode_create() 95
4.12.3.17 opus_custom_mode_destroy() 96

5 File Documentation 97
51 opus.h File Reference e 97

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

vii

5.1.1 Detailed Description e e 101
B.20pUsS.h . . L e 101
5.8 opus_custom.h File Reference e 104

5.3.1 Detailed Description L 105

5.3.2 Macro Definition Documentation L 106

5.3.2.1 OPUS_CUSTOM_EXPORT e e e e e e e e 106
5.3.22 OPUS_CUSTOM_EXPORT_STATIC o e e e 106
5.4 0pus_custom.h . . L e 106
5.5 opus_defines.h File Reference 108

5.5.1 Detailed Description 113
5.6 opus_defines.h L L 113
5.7 opus_multistream.h File Reference 117

5.7.1 Detailed Description e e e 119
5.8 opus_multistream.h L e 119
5.9 opus_types.h File Reference e 121

5.9.1 Detailed Description e e 122

5.9.2 Macro Definition Documentation L L 123

5.9.2.10puUS_iNt 123
5.9.220pus_intB4 123
5.9.230pus_int8 e 123
5.9.240pus_Uint 123
5.9.250pus_UintB4 L 123
5.9.260pus_UINt8 123

5.9.3 Typedef Documentation L e 123
5.9.3.10pus_int16 L e 123
5.9.3.20pus_int32 L e e 123

5.9.3.30pus Uint16 123

5984 0pus uint32 124

510 0pus_types.h e 124
Index 127

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 1
Opus

The Opus codec is designed for interactive speech and audio transmission over the Internet. It is designed by the IETF
Codec Working Group and incorporates technology from Skype's SILK codec and Xiph.Org's CELT codec.

The Opus codec is designed to handle a wide range of interactive audio applications, including Voice over IP, videocon-
ferencing, in-game chat, and even remote live music performances. It can scale from low bit-rate narrowband speech to
very high quality stereo music. Its main features are:

» Sampling rates from 8 to 48 kHz

« Bit-rates from 6 kb/s to 510 kb/s

» Support for both constant bit-rate (CBR) and variable bit-rate (VBR)
+ Audio bandwidth from narrowband to full-band

» Support for speech and music

» Support for mono and stereo

» Support for multichannel (up to 255 channels)

» Frame sizes from 2.5 ms to 60 ms

» Good loss robustness and packet loss concealment (PLC)

+ Floating point and fixed-point implementation
Documentation sections:

* Opus Encoder

* Opus Decoder

» Repacketizer

* Opus Multistream API

» Opus library information functions

» Opus Custom

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Opus

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 2

Topic Index

2.1 Topics

Here is a list of all topics with brief descriptions:

Opus Encoder e e e 7
Opus Decoder o e e e 14
Repacketizer e 31
Errorcodes e e 40
Pre-defined values for CTL interface e e 42
Encoderrelated CTLS o e e e e e e e e e 46
Generic CTLS e e e e 65
Decoderrelated CTLs e e 68
Opus library information functions L 71
Multistream specific encoder and decoder CTLs e 72
Opus Multistream API e e 73
Opus CUSIOM o e e e 86

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Topic Index

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

opus.h

Opus reference implementation APl L 97
opus_custom.h

Opus-Custom reference implementation APl 104
opus_defines.h

Opus reference implementation constants, 108
opus_multistream.h

Opus reference implementation multistream APl L. 117
opus_types.h

Opus reference implementationtypes L 121

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

File Index

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 4

Topic Documentation

4.1

Opus Encoder

This page describes the process and functions used to encode Opus.

Typedefs

typedef struct OpusEncoder OpusEncoder

Opus encoder state.

Functions

int opus_encoder_get_size (int channels)

Gets the size of an OpusEncoder structure.
OpusEncoder * opus_encoder_create (opus_int32 Fs, int channels, int application, int xerror)

Allocates and initializes an encoder state.
int opus_encoder_init (OpusEncoder xst, opus_int32 Fs, int channels, int application)
Initializes a previously allocated encoder state The memory pointed to by st must be at least the size returned by
opus_encoder_get size().
opus_int32 opus_encode (OpusEncoder xst, const opus_int16 xpcm, int frame_size, unsigned char xdata,
opus_int32 max_data_bytes)
Encodes an Opus frame.
opus_int32 opus_encode24 (OpusEncoder xst, const opus_int32 xpcm, int frame_size, unsigned char xdata,
opus_int32 max_data_bytes)
Encodes an Opus frame.
opus_int32 opus_encode_float (OpusEncoder xst, const float xpcm, int frame_size, unsigned char xdata,
opus_int32 max_data_bytes)
Encodes an Opus frame from floating point input.
void opus_encoder_destroy (OpusEncoder x*st)
Frees an OpusEncoder allocated by opus_encoder_create().
int opus_encoder_ctl (OpusEncoder xst, int request,...)

Perform a CTL function on an Opus encoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

8 Topic Documentation

4.1.1 Detailed Description

This page describes the process and functions used to encode Opus.

Since Opus is a stateful codec, the encoding process starts with creating an encoder state. This can be done with:
int error;

OpusEncoder =*enc;

enc = opus_encoder_create (Fs, channels, application, &error);

From this point, enc can be used for encoding an audio stream. An encoder state must not be used for more than one
stream at the same time. Similarly, the encoder state must not be re-initialized for each frame.

While opus_encoder_create() allocates memory for the state, it's also possible to initialize pre-allocated memory:
int size;

int error;

OpusEncoder =*enc;

size = opus_encoder_get_size (channels);

enc = malloc(size);

error = opus_encoder_init (enc, Fs, channels, application);

where opus_encoder_get_size() returns the required size for the encoder state. Note that future versions of this code
may change the size, so no assumptions should be made about it.

The encoder state is always continuous in memory and only a shallow copy is sufficient to copy it (e.g. memcpy())

It is possible to change some of the encoder's settings using the opus_encoder_ctl() interface. All these settings already
default to the recommended value, so they should only be changed when necessary. The most common settings one

may want to change are:

opus_encoder_ctl (enc, OPUS_SET_BITRATE (bitrate));
opus_encoder_ctl (enc, OPUS_SET_COMPLEXITY (complexity));
opus_encoder_ctl (enc, OPUS_SET_SIGNAL (signal_type));

where

* bitrate is in bits per second (b/s)

» complexity is a value from 1 to 10, where 1 is the lowest complexity and 10 is the highest

« signal_type is either OPUS_AUTO (default), OPUS_SIGNAL_VOICE, or OPUS_SIGNAL_MUSIC
See Encoder related CTLs and Generic CTLs for a complete list of parameters that can be set or queried. Most param-
eters can be set or changed at any time during a stream.

To encode a frame, opus_encode() or opus_encode_float() must be called with exactly one frame (2.5, 5, 10, 20, 40 or
60 ms) of audio data:

len = opus_encode (enc, audio_frame, frame_size, packet, max_packet);

where

» audio_frame is the audio data in opus_int16 (or float for opus_encode_float())
« frame_size is the duration of the frame in samples (per channel)
» packet is the byte array to which the compressed data is written

* max_packet is the maximum number of bytes that can be written in the packet (4000 bytes is recommended). Do
not use max_packet to control VBR target bitrate, instead use the OPUS_SET_BITRATE CTL.

opus_encode() and opus_encode_float() return the number of bytes actually written to the packet. The return value can
be negative, which indicates that an error has occurred. If the return value is 2 bytes or less, then the packet does not
need to be transmitted (DTX).

Once the encoder state if no longer needed, it can be destroyed with

opus_encoder_destroy (enc) ;

If the encoder was created with opus_encoder_init() rather than opus_encoder_create(), then no action is required aside
from potentially freeing the memory that was manually allocated for it (calling free(enc) for the example above)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.1 Opus Encoder

4.1.2 Typedef Documentation

4.1.2.1 OpusEncoder

typedef struct OpusEncoder OpusEncoder

Opus encoder state.

This contains the complete state of an Opus encoder. It is position independent and can be freely copied.

See also

opus_encoder_create,opus_encoder_init

4.1.3 Function Documentation

4.1.3.1 opus_encode()

opus_1int32 opus_encode (

OpusEncoder * st,

const opus_intl6 * pcm,

int frame_ size,

unsigned char * data,

opus_int32 max_data_bytes)

Encodes an Opus frame.

Parameters

in st OpusEncoderx*: Encoder state

in pcm opus_1int16x*: Input signal (interleaved if 2 channels). length is
frame_sizexchannelsxsizeof(opus_int16)

in frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out | data unsigned charx*: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes | opus_int 32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

10

Topic Documentation

4.1.3.2 opus_encode24()

opus_1int32 opus_encode24

(

OpusEncoder * st,

const opus_int32 *x pcm,

int frame_size,

unsigned char * data,

opus_int32 max_data_bytes)

Encodes an Opus frame.

Parameters

in st OpusEncoderx*: Encoder state

in pcm opus_1int32=*: Input signal (interleaved if 2 channels) representing (or slightly
exceeding) 24-bit values. length is frame_sizexchannelsxsizeof(opus_int32)

in frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out | data unsigned charx*: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes | opus_1int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET_BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.1.3.3 opus_encode_float()

opus_int32 opus_encode_float (

OpusEncoder * st,

const float * pcm,

int frame_ size,

unsigned char * data,

opus_int32 max_data_bytes)

Encodes an Opus frame from floating point input.

Parameters
in st OpusEncoderx: Encoder state
in pcm floatx*: Inputin float format (interleaved if 2 channels), with a normal range of +/-1.0.

Samples with a range beyond +/-1.0 are supported but will be clipped by decoders
using the integer APl and should only be used if it is known that the far end supports
extended dynamic range. length is frame_sizexchannelsxsizeof(float)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.1 Opus Encoder 11

Parameters
in frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.
out | data unsigned charx*: Output payload. This must contain storage for at least

max_data_bytes.

in max_data_bytes | opus_int 32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.1.3.4 opus_encoder_create()

OpusEncoder * opus_encoder_create (
opus_int32 Fs,
int channels,
int application,

int % error)
Allocates and initializes an encoder state.
There are three coding modes:

OPUS_APPLICATION_VOIP gives best quality at a given bitrate for voice signals. It enhances the input signal by high-
pass filtering and emphasizing formants and harmonics. Optionally it includes in-band forward error correction to protect
against packet loss. Use this mode for typical VoIP applications. Because of the enhancement, even at high bitrates the
output may sound different from the input.

OPUS_APPLICATION_AUDIO gives best quality at a given bitrate for most non-voice signals like music. Use this mode
for music and mixed (music/voice) content, broadcast, and applications requiring less than 15 ms of coding delay.

OPUS_APPLICATION_RESTRICTED_LOWDELAY configures low-delay mode that disables the speech-optimized
mode in exchange for slightly reduced delay. This mode can only be set on an newly initialized or freshly reset en-

coder because it changes the codec delay.

This is useful when the caller knows that the speech-optimized modes will not be needed (use with caution).

Parameters

in Fs opus_1int32: Sampling rate of input signal (Hz) This must be one of 8000, 12000, 16000,
24000, or 48000.

in channels int: Number of channels (1 or 2) in input signal

in application | int: Coding mode (one of OPUS_APPLICATION_VOIP, OPUS_APPLICATION_AUDIO, or
OPUS_APPLICATION_RESTRICTED_LOWDELAY)

out | error intx*: Error codes

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

12 Topic Documentation

Note

Regardless of the sampling rate and number channels selected, the Opus encoder can switch to a lower audio
bandwidth or number of channels if the bitrate selected is too low. This also means that it is safe to always use 48
kHz stereo input and let the encoder optimize the encoding.

4.1.3.5 opus_encoder_ctl()

int opus_encoder_ctl (
OpusEncoder * st,
int request,

)
Perform a CTL function on an Opus encoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

st OpusEncoderx*: Encoder state.

request | This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs or
Encoder related CTLs.

See also

Generic CTLs
Encoder related CTLs

4.1.3.6 opus_encoder_destroy()

void opus_encoder_destroy (

OpusEncoder * st)

Frees an OpusEncoder allocated by opus_encoder_create().

Parameters

‘ in ‘ st‘ OpusEncoderx: State to be freed. ‘

4.1.3.7 opus_encoder_get_size()

int opus_encoder_get_size (

int channels)

Gets the size of an OpusEncoder structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.1 Opus Encoder 13

Parameters

‘ in ‘ channels | int: Number of channels. This must be 1 or 2.

Returns

The size in bytes.

Note

Since this function does not take the application as input, it will overestimate the size required for OPUS«
_APPLICATION_RESTRICTED_SILK and OPUS_APPLICATION_RESTRICTED_CELT. That is generally not a
problem, except when trying to know the size to use for a copy.

4.1.3.8 opus_encoder_init()

int opus_encoder_init (
OpusEncoder * st,
opus_int32 Fs,
int channels,

int application)

Initializes a previously allocated encoder state The memory pointed to by st must be at least the size returned by
opus_encoder_get_size().

This is intended for applications which use their own allocator instead of malloc.

See also

opus_encoder_create(),opus_encoder_get_size() To reset a previously initialized state, use the OPUS_RESET_STATE

CTL.
Parameters
in | st OpusEncoderx*: Encoder state
in | Fs opus_1int32: Sampling rate of input signal (Hz) This must be one of 8000, 12000, 16000,

24000, or 48000.
in | channels int: Number of channels (1 or 2) in input signal

in | application | int: Coding mode (one of OPUS_APPLICATION_VOIP, OPUS_APPLICATION_AUDIO, or
OPUS_APPLICATION_RESTRICTED_LOWDELAY)

Return values

OPUS _OK | Success or Error codes

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

14

Topic Documentation

4.2 Opus Decoder

This page describes the process and functions used to decode Opus.

Typedefs

* typedef struct OpusDecoder OpusDecoder

Opus decoder state.
* typedef struct OpusDREDDecoder OpusDREDDecoder

Opus DRED decoder.
« typedef struct OpusDRED OpusDRED

Opus DRED state.

Functions

« int opus_decoder_get_size (int channels)

Gets the size of an OpusDecoder structure.

» OpusDecoder * opus_decoder_create (opus_int32 Fs, int channels, int xerror)

Allocates and initializes a decoder state.

« int opus_decoder_init (OpusDecoder *st, opus_int32 Fs, int channels)

Initializes a previously allocated decoder state.

« int opus_decode (OpusDecoder *st, const unsigned char xdata, opus_int32 len, opus_int16 *pcm, int frame_size,

int decode_fec)

Decode an Opus packet.

« int opus_decode24 (OpusDecoder xst, const unsigned char xdata, opus_int32 len, opus_int32 xpcm, int frame«

_size, int decode_fec)

Decode an Opus packet.

« int opus_decode_float (OpusDecoder xst, const unsigned char *data, opus_int32 len, float xpcm, int frame_size,

int decode_fec)

Decode an Opus packet with floating point output.

« int opus_decoder_ctl (OpusDecoder xst, int request,...)
Perform a CTL function on an Opus decoder.

« void opus_decoder_destroy (OpusDecoder sst)
Frees an OpusDecoder allocated by opus_decoder_create().

« int opus_dred_decoder_get_size (void)
Gets the size of an OpusDREDDecoder structure.

» OpusDREDDecoder * opus_dred_decoder_create (int xerror)
Allocates and initializes an OpusDREDDecoder state.

* int opus_dred_decoder_init (OpusDREDDecoder *dec)
Initializes an OpusDREDDecoder state.

+ void opus_dred_decoder_destroy (OpusDREDDecoder xdec)

Frees an OpusDREDDecoder allocated by opus_dred_decoder_create().
* int opus_dred_decoder_ctl (OpusDREDDecoder xdred_dec, int request,...)

Perform a CTL function on an Opus DRED decoder.
* int opus_dred_get_size (void)

Gets the size of an OpusDRED structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 15

4.2.1

This p

OpusDRED = opus_dred_alloc (int xerror)
Allocates and initializes a DRED state.
void opus_dred_free (OpusDRED xdec)
Frees an OpusDRED allocated by opus_dred_create().
int opus_dred_parse (OpusDREDDecoder xdred_dec, OpusDRED x*dred, const unsigned char «data, opus_int32
len, opus_int32 max_dred_samples, opus_int32 sampling_rate, int xdred_end, int defer_processing)
Decode an Opus DRED packet.
int opus_dred_process (OpusDREDDecoder *dred_dec, const OpusDRED xsrc, OpusDRED xdst)
Finish decoding an Opus DRED packet.
int opus_decoder_dred_decode (OpusDecoder xst, const OpusDRED xdred, opus_int32 dred_offset, opus_int16
xpcm, opus_int32 frame_size)
Decode audio from an Opus DRED packet with 16-bit output.
int opus_decoder_dred_decode24 (OpusDecoder xst, const OpusDRED xdred, opus_int32 dred_offset,
opus_int32 xpcm, opus_int32 frame_size)
Decode audio from an Opus DRED packet with 24-bit output.
int opus_decoder_dred_decode_float (OpusDecoder xst, const OpusDRED xdred, opus_int32 dred_offset, float
xpcm, opus_int32 frame_size)
Decode audio from an Opus DRED packet with floating point output.
int opus_packet_parse (const unsigned char xdata, opus_int32 len, unsigned char xout_toc, const unsigned char
xframes[48], opus_int16 size[48], int xpayload_offset)
Parse an opus packet into one or more frames.
int opus_packet_get_bandwidth (const unsigned char xdata)
Gets the bandwidth of an Opus packet.
int opus_packet_get_samples_per_frame (const unsigned char xdata, opus_int32 Fs)
Gets the number of samples per frame from an Opus packet.
int opus_packet_get_nb_channels (const unsigned char xdata)
Gets the number of channels from an Opus packet.
int opus_packet_get_nb_frames (const unsigned char packet[], opus_int32 len)
Gets the number of frames in an Opus packet.
int opus_packet_get_nb_samples (const unsigned char packet[], opus_int32 len, opus_int32 Fs)
Gets the number of samples of an Opus packet.
int opus_packet_has_Ibrr (const unsigned char packet[], opus_int32 len)
Checks whether an Opus packet has LBRR.
int opus_decoder_get_nb_samples (const OpusDecoder xdec, const unsigned char packet[], opus_int32 len)
Gets the number of samples of an Opus packet.
void opus_pcm_soft_clip (float xpcm, int frame_size, int channels, float *softclip_mem)
Applies soft-clipping to bring a float signal within the [-1,1] range.

Detailed Description

age describes the process and functions used to decode Opus.

The decoding process also starts with creating a decoder state. This can be done with:

int

error;

OpusDecoder xdec;

dec =

where

opus_decoder_create (Fs, channels, &error);

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

16 Topic Documentation

* Fsis the sampling rate and must be 8000, 12000, 16000, 24000, or 48000
» channels is the number of channels (1 or 2)
« error will hold the error code in case of failure (or OPUS_OK on success)

« the return value is a newly created decoder state to be used for decoding

While opus_decoder_create() allocates memory for the state, it's also possible to initialize pre-allocated memory:
int size;

int error;

OpusDecoder =xdec;

size = opus_decoder_get_size (channels);

dec = malloc(size);

error = opus_decoder_init (dec, Fs, channels);

where opus_decoder_get_size() returns the required size for the decoder state. Note that future versions of this code
may change the size, so no assumptions should be made about it.

The decoder state is always continuous in memory and only a shallow copy is sufficient to copy it (e.g. memcpy())

To decode a frame, opus_decode() or opus_decode_float() must be called with a packet of compressed audio data:

frame_size = opus_decode (dec, packet, len, decoded, max_size, 0);

where

» packet is the byte array containing the compressed data

* len is the exact number of bytes contained in the packet

» decoded is the decoded audio data in opus_int16 (or float for opus_decode_float())

* max_size is the max duration of the frame in samples (per channel) that can fit into the decoded_frame array
opus_decode() and opus_decode_float() return the number of samples (per channel) decoded from the packet. If that

value is negative, then an error has occurred. This can occur if the packet is corrupted or if the audio buffer is too small
to hold the decoded audio.

Opus is a stateful codec with overlapping blocks and as a result Opus packets are not coded independently of each
other. Packets must be passed into the decoder serially and in the correct order for a correct decode. Lost packets can
be replaced with loss concealment by calling the decoder with a null pointer and zero length for the missing packet.

A single codec state may only be accessed from a single thread at a time and any required locking must be performed
by the caller. Separate streams must be decoded with separate decoder states and can be decoded in parallel unless
the library was compiled with NONTHREADSAFE_PSEUDOSTACK defined.

4.2.2 Typedef Documentation
4.2.2.1 OpusDecoder

typedef struct OpusDecoder OpusDecoder
Opus decoder state.

This contains the complete state of an Opus decoder. It is position independent and can be freely copied.

See also

opus_decoder_create,opus_decoder_init

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder

17

4.2.2.2

OpusDRED

typedef struct OpusDRED OpusDRED

Opus DRED state.

This contains the complete state of an Opus DRED packet. It is position independent and can be freely copied.

See also

opus_dred_create,opus_dred_init

4.2.2.3 OpusDREDDecoder

typedef struct OpusDREDDecoder OpusDREDDecoder

Opus DRED decoder.

This contains the complete state of an Opus DRED decoder. It is position independent and can be freely copied.

See also

opus_dred_decoder_create,opus_dred_decoder_init

4.2.3 Function Documentation

4.2.3.1

opus_decode()

int opus_decode (

OpusDecoder * st,

const unsigned char * data,

opus_int32 len,

opus_intl6é * pcm,

int frame_size,

int decode_fec)

Decode an Opus packet.

Parameters
in st OpusDecoderx*: Decoder state
in data charx: Input payload. Use a NULL pointer to indicate packet loss
in len opus_1int32: Number of bytes in payload=
out | pcm opus_1int16x: Output signal (interleaved if 2 channels). length is
frame_sizexchannelsxsizeof(opus_int16)
in frame_size | Number of samples per channel of available space in pcm. If this is less than the maximum

packet duration (120ms; 5760 for 48kHz), this function will not be capable of decoding some
packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then frame_size needs

Generated o

in Mon Dec 15 2025

1219.06 S G5Db] R Jhdation of audio that is missing, otherwise the decoder will not be in the
optimal state to decode the next incoming packet. For the PLC and FEC cases, frame_size
must be a multiple of 2.5 ms.

in

decode_fec

int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If

NnA crinch Aata ie availlahla tha frame ie AarndaAd ace if it warae lact

18 Topic Documentation

Returns

Number of decoded samples per channel or Error codes

4.2.3.2 opus_decode24()

int opus_decode24 (
OpusDecoder * st,
const unsigned char * data,
opus_int32 len,
opus_int32 * pcm,
int frame _size,

int decode_fec)

Decode an Opus packet.

Parameters
in st OpusDecoderx*: Decoder state
in data charx: Input payload. Use a NULL pointer to indicate packet loss
in len opus_1int32: Number of bytes in payloads
out | pcm opus_int 32x*: Output signal (interleaved if 2 channels) representing (or slightly

exceeding) 24-bit values. length is frame_sizexchannelsxsizeof(opus_int32)

in frame_size | Number of samples per channel of available space in pcm. If this is less than the maximum
packet duration (120ms; 5760 for 48kHz), this function will not be capable of decoding some
packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then frame_size needs
to be exactly the duration of audio that is missing, otherwise the decoder will not be in the
optimal state to decode the next incoming packet. For the PLC and FEC cases, frame_size
must be a multiple of 2.5 ms.

in decode_fec | int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.

Returns

Number of decoded samples or Error codes

4.2.3.3 opus_decode_float()

int opus_decode_float (
OpusDecoder * st,
const unsigned char * data,
opus_int32 len,
float * pcm,
int frame_ size,

int decode_fec)

Decode an Opus packet with floating point output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 19

Parameters
in st OpusDecoderx*: Decoder state
in data charx: Input payload. Use a NULL pointer to indicate packet loss
in len opus_1int32: Number of bytes in payload
out | pcm floatx*: Output signal (interleaved if 2 channels). length is

frame_sizexchannelsxsizeof(float)

in frame_size | Number of samples per channel of available space in pcm. If this is less than the maximum
packet duration (120ms; 5760 for 48kHz), this function will not be capable of decoding some
packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then frame_size needs
to be exactly the duration of audio that is missing, otherwise the decoder will not be in the
optimal state to decode the next incoming packet. For the PLC and FEC cases, frame_size
must be a multiple of 2.5 ms.

in decode fec | int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available the frame is decoded as if it were lost.

Returns

Number of decoded samples per channel or Error codes

4.2.3.4 opus_decoder_create()

OpusDecoder * opus_decoder_create (
opus_int32 Fs,
int channels,

int % error)

Allocates and initializes a decoder state.

Parameters

in Fs opus_1int32: Sample rate to decode at (Hz). This must be one of 8000, 12000, 16000,
24000, or 48000.

in channels | int: Number of channels (1 or 2) to decode

out | error intx: OPUS_OK Success or Error codes

Internally Opus stores data at 48000 Hz, so that should be the default value for Fs. However, the decoder can efficiently
decode to buffers at 8, 12, 16, and 24 kHz so if for some reason the caller cannot use data at the full sample rate, or
knows the compressed data doesn't use the full frequency range, it can request decoding at a reduced rate. Likewise,
the decoder is capable of filling in either mono or interleaved stereo pcm buffers, at the caller's request.

4.2.3.5 opus_decoder_ctl()

int opus_decoder_ctl (

OpusDecoder * st,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

20

Topic Documentation

int request,

)

Perform a CTL function on an Opus decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters
st OpusDecoderx*: Decoder state.
request | This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs or
Decoder related CTLs.
See also
Generic CTLs

Decoder related CTLs

4.2.3.6 opus_decoder_destroy()

void opus_decoder_destroy (

OpusDecoder * st)

Frees an OpusDecoder allocated by opus_decoder_create().

Parameters

‘ in ‘ st‘ OpusDecoderx: State to be freed. ‘

4.2.3.7 opus_decoder_dred_decode()

int opus_decoder_dred_decode (

OpusDecoder * st,
const OpusDRED * dred,
opus_int32 dred_offset,
opus_intl6 * pcm,

opus_int32 frame_size)

Decode audio from an Opus DRED packet with 16-bit output.

Parameters
in st OpusDecoderx: Decoder state
in dred OpusDREDx*: DRED state
in dred_offset | opus_1int32: position of the redundancy to decode (in samples before the beginning of
the real audio data in the packet).

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 21
Parameters
out | pcm opus_int16x*: Output signal (interleaved if 2 channels). length is
frame_sizexchannelsxsizeof(opus_int16)
in frame_size | Number of samples per channel to decode in pcm. frame_size must be a multiple of 2.5 ms.
Returns

Number of decoded samples or Error codes

4.2.3.8 opus_decoder_dred_decode24()

int opus_decoder_dred_decode24 (

OpusDecoder * st,

const OpusDRED * dred,

opus_int32 dred offset,

opus_int32 * pcm,

opus_int32 frame_size)

Decode audio from an Opus DRED packet with 24-bit output.

Parameters
in st OpusDecoderx: Decoder state
in dred OpusDREDx*: DRED state
in dred offset | opus_int32: position of the redundancy to decode (in samples before the beginning of

the real audio data in the packet).

out | pcm opus_1int32x: Output signal (interleaved if 2 channels). length is
frame_sizexchannelsxsizeof(opus_int16)
in frame_size | Number of samples per channel to decode in pcm. frame_size must be a multiple of 2.5 ms.
Returns

Number of decoded samples or Error codes

4.2.3.9 opus_decoder_dred_decode_float()

int opus_decoder_dred_decode_float (

OpusDecoder * st,
const OpusDRED * dred,

opus_int32 dred offset,

float * pcm,

opus_1int32 frame_size)

Decode audio from an Opus DRED packet with floating point output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

22 Topic Documentation
Parameters
in st OpusDecoderx: Decoder state
in dred OpusDREDx*: DRED state
in dred_offset | opus_1int32: position of the redundancy to decode (in samples before the beginning of
the real audio data in the packet).
out | pcm floatx*: Output signal (interleaved if 2 channels). length is
frame_sizexchannelsxsizeof(float)
in frame_size | Number of samples per channel to decode in pcm. frame_size must be a multiple of 2.5 ms.
Returns

Number of decoded samples or Error codes

4.2.3.10 opus_decoder_get_nb_samples()

int opus_decoder_get_nb_samples (

const OpusDecoder * dec,

const unsigned char packet[],

opus_int32 len)

Gets the number of samples of an Opus packet.

Parameters
in | dec OpusDecoderx*: Decoder state
in | packet | charsx: Opus packet
in | len opus_1int32: Length of packet
Returns

Number of samples

Return values

OPUS_BAD ARG | Insufficient data was passed to the function

OPUS_INVALID_PACKET | The compressed data passed is corrupted or of an unsupported type

4.2.3.11 opus_decoder_get_size()

int opus_decoder_get_size (

int channels)

Gets the size of an OpusDecoder structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 23

Parameters

‘ in ‘ channels | int: Number of channels. This must be 1 or 2.

Returns

The size in bytes.

4.2.3.12 opus_decoder_init()

int opus_decoder_init (
OpusDecoder * st,
opus_int32 Fs,

int channels)
Initializes a previously allocated decoder state.

The state must be at least the size returned by opus_decoder_get_size(). This is intended for applications which use
their own allocator instead of malloc.

See also

opus_decoder_create,opus_decoder_get_size To reset a previously initialized state, use the OPUS_RESET_STATE

CTL.
Parameters
in | st OpusDecoderx*: Decoder state.
in | Fs opus_1int32: Sampling rate to decode to (Hz). This must be one of 8000, 12000, 16000,

24000, or 48000.
in | channels | int: Number of channels (1 or 2) to decode

Return values

OPUS _OK | Success or Error codes

4.2.3.13 opus_dred_alloc()

OpusDRED * opus_dred_alloc (

int % error)

Allocates and initializes a DRED state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

24

Topic Documentation

Parameters

‘ out ‘ error ‘ intx*: OPUS_OK Success or Error codes

4.2.3.14 opus_dred_decoder_create()

OpusDREDDecoder * opus_dred_decoder_create (

int % error)

Allocates and initializes an OpusDREDDecoder state.

Parameters

‘ out ‘ error ‘ intx*: OPUS_OK Success or Error codes

4.2.3.15 opus_dred_decoder_ctl()

int opus_dred_decoder_ctl (
OpusDREDDecoder #* dred_dec,
int request,

)

Perform a CTL function on an Opus DRED decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

dred _dec | OpusDREDDecoderx: DRED Decoder state.

Generic CTLs or Decoder related CTLs.

request This and all remaining parameters should be replaced by one of the convenience macros in

See also

Generic CTLs

Decoder related CTLs

4.2.3.16 opus_dred_decoder_destroy()

void opus_dred_decoder_destroy (
OpusDREDDecoder * dec)

Frees an OpusDREDDecoder allocated by opus_dred_decoder_create().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder

25

Parameters

‘ in ‘ dec ‘ OpusDREDDecodersx: State to be freed.

4.2.3.17 opus_dred_decoder_get_size()

int opus_dred_decoder_get_size (

void)

Gets the size of an OpusDREDDecoder structure.

Returns

The size in bytes.

4.2.3.18 opus_dred_decoder_init()

int opus_dred_decoder_init (

OpusDREDDecoder * dec)

Initializes an OpusDREDDecoder state.

Parameters

‘ in ‘ dec ‘ OpusDREDDecoderx*: State to be initialized.

4.2.3.19 opus_dred_free()

void opus_dred_free (
OpusDRED * dec)

Frees an OpusDRED allocated by opus_dred_create().

Parameters

‘ in ‘ dec ‘ OpusDREDx: State to be freed. ‘

4.2.3.20 opus_dred_get_size()

int opus_dred_get_size (

void)

Gets the size of an OpusDRED structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

26

Topic Documentation

Returns

The size in bytes.

4.2.3.21

opus_dred_parse()

int opus_dred_parse (
OpusDREDDecoder * dred_dec,
OpusDRED * dred,

const unsigned

opus_int32 len,

char % data,

opus_1int32 max_dred_samples,

opus_int32 sampling_rate,

int % dred_end,

int defer_processing)

Decode an Opus DRED packet.

Parameters
in dred_dec OpusDREDx*: DRED Decoder state
in dred OpusDREDx*: DRED state
in data charsx: Input payload
in len opus_1int32: Number of bytes in payload
in max_dred_samples | opus_1int32: Maximum number of DRED samples that may be needed (if
available in the packet).
in sampling_rate opus_1int32: Sampling rate used for max_dred_samples argument. Needs not
match the actual sampling rate of the decoder.
out | dred _end opus_int 32x*: Number of non-encoded (silence) samples between the DRED
timestamp and the last DRED sample.
in defer_processing int: Flag (0 or 1). If set to one, the CPU-intensive part of the DRED decoding is
deferred until opus_dred_process() is called.
Returns

Offset (positive) of the first decoded DRED samples, zero if no DRED is present, or Error codes

4.2.3.22 opus_dred_process()

int opus_

dred_process (

OpusDREDDecoder #* dred_dec,

const OpusDRED
OpusDRED % dst

* src,

)

Finish decoding an Opus DRED packet.

The function only needs to be called if opus_dred_parse() was called with defer_processing=1. The source and desti-
nation will often be the same DRED state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

27

4.2 Opus Decoder
Parameters

in dred dec | OpusDREDx*: DRED Decoder state

in src OpusDREDx*: Source DRED state to start the processing from.

out | dst OpusDRED:*: Destination DRED state to store the updated state after processing.
Returns

Error codes

4.2.3.23 opus_packet_get_bandwidth()

int opus_packet_get_bandwidth (

const unsigned char * data)

Gets the bandwidth of an Opus packet.

Parameters

‘ in ‘ data ‘ charx*: Opus packet

Return values

OPUS_BANDWIDTH_NARROWBAND

Narrowband (4kHz bandpass)

OPUS_BANDWIDTH_MEDIUMBAND

Mediumband (6kHz bandpass)

OPUS_BANDWIDTH_WIDEBAND

Wideband (8kHz bandpass)

OPUS_BANDWIDTH_SUPERWIDEBAND

Superwideband (12kHz bandpass)

OPUS_BANDWIDTH_FULLBAND

Fullband (20kHz bandpass)

OPUS_INVALID _PACKET

The compressed data passed is corrupted or of an unsupported type

4.2.3.24 opus_packet_get_nb_channels()

int opus_packet_get_nb_channels (

const unsigned char * data)

Gets the number of channels from an Opus packet.

Parameters

‘ in ‘ data ‘ charx*: Opus packet

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

28

Topic Documentation

Returns

Number of channels

Return values

OPUS_INVALID_PACKET | The compressed data passed is corrupted or of an unsupported type

4.2.3.25 opus_packet_get_nb_frames()

int opus_packet_get_nb_frames (

const unsigned char packet[],

opus_int32 len)

Gets the number of frames in an Opus packet.

Parameters

in | packet | char*: Opus packet

in | len opus_1int32: Length of packet
Returns

Number of frames

Return values

OPUS_BAD ARG | Insufficient data was passed to the function

OPUS_INVALID_PACKET | The compressed data passed is corrupted or of an unsupported type

4.2.3.26 opus_packet_get_nb_samples()

int opus_packet_get_nb_samples (

const unsigned char packet[],

opus_int32 len,

opus_int32 Fs)

Gets the number of samples of an Opus packet.

Parameters
in | packet | char*: Opus packet
in | len opus_1int32: Length of packet
in | Fs opus_1int32: Sampling rate in Hz. This must be a multiple of 400, or inaccurate results will be
returned.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder

29

Returns

Number of samples

Return values

OPUS_BAD ARG | Insufficient data was passed to the function

OPUS_INVALID_PACKET | The compressed data passed is corrupted or of an unsupported type

4.2.3.27 opus_packet_get_samples_per_frame()

int opus_packet_get_samples_per_frame (

const unsigned char * data,

opus_int32 Fs)

Gets the number of samples per frame from an Opus packet.

Parameters
in | data | charx: Opus packet. This must contain at least one byte of data.
in | Fs opus_1int32: Sampling rate in Hz. This must be a multiple of 400, or inaccurate results will be
returned.
Returns

Number of samples per frame.

4.2.3.28 opus_packet_has_lbrr()

int opus_packet_has_1lbrr (

const unsigned char packet[],

opus_int32 len)

Checks whether an Opus packet has LBRR.

Parameters

in | packet | charx: Opus packet

in | len opus_1int32: Length of packet
Returns

1is LBRR is present, 0 otherwise

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

30 Topic Documentation

Return values

OPUS_INVALID_PACKET | The compressed data passed is corrupted or of an unsupported type

4.2.3.29 opus_packet_parse()

int opus_packet_parse (
const unsigned char * data,
opus_int32 len,
unsigned char * out_toc,
const unsigned char * frames[48],
opus_intl6 size[48],
int * payload offset)

Parse an opus packet into one or more frames.

Opus_decode will perform this operation internally so most applications do not need to use this function. This function
does not copy the frames, the returned pointers are pointers into the input packet.

Parameters
in data charx: Opus packet to be parsed
in len opus_1int32: size of data
out | out toc charx: TOC pointer
out | frames char*[48] encapsulated frames
out | size opus_1int16[48] sizes of the encapsulated frames
out | payload_offset | intsx: returns the position of the payload within the packet (in bytes)

Returns

number of frames

4.2.3.30 opus_pcm_soft_clip()

void opus_pcm_soft_clip (
float * pcm,
int frame size,
int channels,

float * softclip_mem)
Applies soft-clipping to bring a float signal within the [-1,1] range.

If the signal is already in that range, nothing is done. If there are values outside of [-1,1], then the signal is clipped as
smoothly as possible to both fit in the range and avoid creating excessive distortion in the process.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 31

Parameters
in,out | pcm floatx*: Input PCM and modified PCM
in frame_size int Number of samples per channel to process
in channels int: Number of channels
in, out | softclip_mem | floatx*: State memory for the soft clipping process (one float per channel, initialized
to zero)

4.3 Repacketizer

The repacketizer can be used to merge multiple Opus packets into a single packet or alternatively to split Opus packets
that have previously been merged.

Typedefs

« typedef struct OpusRepacketizer OpusRepacketizer

Functions

* int opus_repacketizer_get_size (void)
Gets the size of an OpusRepacket izer structure.
» OpusRepacketizer x opus_repacketizer_init (OpusRepacketizer xrp)
(Re)initializes a previously allocated repacketizer state.
» OpusRepacketizer * opus_repacketizer_create (void)
Allocates memory and initializes the new repacketizer with opus_repacketizer _init().
« void opus_repacketizer_destroy (OpusRepacketizer *rp)
Frees an OpusRepacketizer allocated by opus_repacketizer_create().
« int opus_repacketizer_cat (OpusRepacketizer *rp, const unsigned char xdata, opus_int32 len)
Add a packet to the current repacketizer state.
* opus_int32 opus_repacketizer_out_range (OpusRepacketizer *rp, int begin, int end, unsigned char xdata,
opus_int32 maxlen)
Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().
* int opus_repacketizer_get_nb_frames (OpusRepacketizer xrp)

Return the total number of frames contained in packet data submitted to the repacketizer state so far via
opus_repacketizer_cat() since the last call to opus_repacketizer _init() or opus_repacketizer _create().

* opus_int32 opus_repacketizer_out (OpusRepacketizer xrp, unsigned char xdata, opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().
« int opus_packet_pad (unsigned char xdata, opus_int32 len, opus_int32 new_len)

Pads a given Opus packet to a larger size (possibly changing the TOC sequence).
* opus_int32 opus_packet_unpad (unsigned char xdata, opus_int32 len)

Remove all padding from a given Opus packet and rewrite the TOC sequence to minimize space usage.
« int opus_multistream_packet_pad (unsigned char xdata, opus_int32 len, opus_int32 new_len, int nb_streams)

Pads a given Opus multi-stream packet to a larger size (possibly changing the TOC sequence).
* opus_int32 opus_multistream_packet_unpad (unsigned char xdata, opus_int32 len, int nb_streams)

Remove all padding from a given Opus multi-stream packet and rewrite the TOC sequence to minimize space usage.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

32 Topic Documentation

4.3.1 Detailed Description

The repacketizer can be used to merge multiple Opus packets into a single packet or alternatively to split Opus packets
that have previously been merged.

Splitting valid Opus packets is always guaranteed to succeed, whereas merging valid packets only succeeds if all frames
have the same mode, bandwidth, and frame size, and when the total duration of the merged packet is no more than 120
ms. The 120 ms limit comes from the specification and limits decoder memory requirements at a point where framing
overhead becomes negligible.

The repacketizer currently only operates on elementary Opus streams. It will not manipulate multistream packets suc-
cessfully, except in the degenerate case where they consist of data from a single stream.

The repacketizing process starts with creating a repacketizer state, either by calling opus_repacketizer_create() or by
allocating the memory yourself, e.g.,

OpusRepacketizer xrp;

rp = (OpusRepacketizer*)malloc (opus_repacketizer_get_size());
(rp != NULL)
opus_repacketizer_init (rp);

Then the application should submit packets with opus_repacketizer_cat(), extract new packets with opus_repacketizer_out()
or opus_repacketizer_out_range(), and then reset the state for the next set of input packets via opus_repacketizer_init().

For example, to split a sequence of packets into individual frames:
unsigned char =xdata;
int len;
while (get_next_packet (&data, &len))
{
unsigned char out[1276];
opus_int32 out_len;
int nb_frames;

int err;

int 1i;

err = opus_repacketizer_cat (rp, data, len);
(err != OPUS_OK)

{

release_packet (data);

urn err;
}
nb_frames = opus_repacketizer_get_nb_frames (rp);
for (1 = 0; i < nb_frames; 1i++)

{
out_len = opus_repacketizer_out_range(rp, i, i+l, out, sizeof (out));
(out_len < 0)
{
release_packet (data) ;
return (int)out_len;
}
output_next_packet (out, out_len);
}
opus_repacketizer_init (rp);
release_packet (data) ;

Alternatively, to combine a sequence of frames into packets that each contain up to TARGET_DURATION_MS millisec-

onds of data:
// The maximum number of packets with duration TARGET_DURATION_MS occurs
// when the frame size is 2.5 ms, for a total of (TARGET_DURATION_MS=*2/5)
// packets.
unsigned char xdata[(TARGET_DURATION_MSx2/5)+1];
opus_1int32 len[(TARGET_DURATION_MS%2/5)+1];
int nb_packets;
unsigned char out[1277* (TARGET_DURATION_MS=*2/2)1;
opus_1int32 out_len;
int prev_toc;
nb_packets = 0;
(get_next_packet (data+nb_packets, len+nb_packets))
{

int nb_frames;

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 33

int err;
nb_frames = opus_packet_get_nb_frames (data[nb_packets], len[nb_packets]);

(nb_frames < 1)
{

release_packets (data, nb_packets+1);
return nb_frames;

}
nb_frames += opus_repacketizer_get_nb_frames (rp);
// If adding the next packet would exceed our target, or it has an
// incompatible TOC sequence, output the packets we already have before
// submitting it.
// N.B., The nb_packets > 0 check ensures we’ve submitted at least one
// packet since the last call to opus_repacketizer_init (). Otherwise a
// single packet longer than TARGET_DURATION_MS would cause us to try to
// output an (invalid) empty packet. It also ensures that prev_toc has
// been set to a valid value. Additionally, len[nb_packets] > 0 is
// guaranteed by the call to opus_packet_get_nb_frames () above, so the
// reference to data[nb_packets][0] should be valid.

(nb_packets > 0 && (

((prev_toc & 0xFC) != (data[nb_packets][0] & O0xFC)) ||
opus_packet_get_samples_per_frame (data[nb_packets], 48000) *nb_frames >
TARGET_DURATION_MS%*48))

out_len = opus_repacketizer_out (rp, out, sizeof (out));
(out_len < 0)
{
release_packets (data, nb_packets+l);
rn (int)out_len;
}
output_next_packet (out, out_len);
opus_repacketizer_init (rp);
release_packets (data, nb_packets);
data[0] = datal[nb_packets];
len[0] = len[nb_packets];
nb_packets = 0;
}
err = opus_repacketizer_cat (rp, datal[nb_packets], len[nb_packets]);
(err != OPUS_OK)
{
release_packets (data, nb_packets+1);
return err;
}
prev_toc = datal[nb_packets][0];
nb_packets++;
}
// Output the final, partial packet.
© (nb_packets > 0)
{
out_len = opus_repacketizer_out (rp, out, sizeof (out));
release_packets (data, nb_packets);
if (out_len < 0)
return (int)out_len;
output_next_packet (out, out_len);

}

An alternate way of merging packets is to simply call opus_repacketizer_cat() unconditionally until it fails. At that point,
the merged packet can be obtained with opus_repacketizer_out() and the input packet for which opus_repacketizer_cat()
needs to be re-added to a newly reinitialized repacketizer state.

4.3.2 Typedef Documentation
4.3.2.1 OpusRepacketizer

typedef struct OpusRepacketizer OpusRepacketizer

4.3.3 Function Documentation
4.3.3.1 opus_multistream_packet_pad()

int opus_multistream_packet_pad (

unsigned char * data,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

34 Topic Documentation

opus_int32 len,
opus_int32 new_len,

int nb_streams)

Pads a given Opus multi-stream packet to a larger size (possibly changing the TOC sequence).

Parameters
in,out | data const unsigned charsx*: The buffer containing the packet to pad.
len opus_1int32: The size of the packet. This must be at least 1.
new_len opus_1int32: The desired size of the packet after padding. This must be at least 1.
nb_streams | opus_int32: The number of streams (not channels) in the packet. This must be at
least as large as len.
Returns

an error code

Return values

OPUS _OK | onsuccess.
OPUS BAD ARG | lenwas less than 1.
OPUS_INVALID_PACKET | data did not contain a valid Opus packet.

4.3.3.2 opus_multistream_packet_unpad()

opus_1int32 opus_multistream packet_unpad (
unsigned char * data,
opus_int32 len,

int nb_streams)

Remove all padding from a given Opus multi-stream packet and rewrite the TOC sequence to minimize space usage.

Parameters
in, out | data const unsigned charsx: The buffer containing the packet to strip.
len opus_1int32: The size of the packet. This must be at least 1.
nb_streams | opus_int32: The number of streams (not channels) in the packet. This must be at
least 1.
Returns

The new size of the output packet on success, or an error code on failure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer

Return values

OPUS BAD ARG | lenwas less than 1 or new_len was less than len.

OPUS_INVALID_PACKET | data did not contain a valid Opus packet.

4.3.3.3 opus_packet_pad()

int opus_packet_pad (

unsigned char * data,

opus_int32 len,

opus_int32 new_lIen)

Pads a given Opus packet to a larger size (possibly changing the TOC sequence).

Parameters

in, out | data

const unsigned charsx: The buffer containing the packet to pad.

len

opus_1int32: The size of the packet. This must be at least 1.

new_len | opus_1int32: The desired size of the packet after padding. This must be at least as

large as len.

Returns

an error code

Return values

OPUS _OK | onsuccess.

OPUS BAD ARG | lenwas less than 1 or new_len was less than len.

OPUS_INVALID_PACKET | data did not contain a valid Opus packet.

4.3.3.4 opus_packet_unpad()

opus_1int32 opus_packet_unpad (

unsigned char * data,

opus_int32 len)

Remove all padding from a given Opus packet and rewrite the TOC sequence to minimize space usage.

Parameters

in, out | data

const unsigned charx*: The buffer containing the packet to strip.

len

opus_1int32: The size of the packet. This must be at least 1.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

36 Topic Documentation

Returns

The new size of the output packet on success, or an error code on failure.

Return values

OPUS BAD ARG | lenwas less than 1.
OPUS_INVALID_PACKET | data did not contain a valid Opus packet.

4.3.3.5 opus_repacketizer_cat()

int opus_repacketizer_cat (
OpusRepacketizer * rp,
const unsigned char * data,

opus_int32 len)
Add a packet to the current repacketizer state.

This packet must match the configuration of any packets already submitted for repacketization since the last call to
opus_repacketizer_init(). This means that it must have the same coding mode, audio bandwidth, frame size, and channel
count. This can be checked in advance by examining the top 6 bits of the first byte of the packet, and ensuring they
match the top 6 bits of the first byte of any previously submitted packet. The total duration of audio in the repacketizer
state also must not exceed 120 ms, the maximum duration of a single packet, after adding this packet.

The contents of the current repacketizer state can be extracted into new packets using opus_repacketizer_out() or
opus_repacketizer_out_range().

In order to add a packet with a different configuration or to add more audio beyond 120 ms, you must clear the repacke-
tizer state by calling opus_repacketizer_init(). If a packet is too large to add to the current repacketizer state, no part of it
is added, even if it contains multiple frames, some of which might fit. If you wish to be able to add parts of such packets,
you should first use another repacketizer to split the packet into pieces and add them individually.

See also

opus_repacketizer_out_range
opus_repacketizer_out

opus_repacketizer_init

Parameters

m OpusRepacketizerx*: The repacketizer state to which to add the packet.

in | data | const unsigned chars*: The packet data. The application must ensure this pointer remains
valid until the next call to opus_repacketizer_init() or opus_repacketizer_destroy().

len opus_1int32: The number of bytes in the packet data.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 37

Returns

An error code indicating whether or not the operation succeeded.

Return values

OPUS_OK | The packet's contents have been added to the repacketizer state.

OPUS_INVALID_PACKET | The packet did not have a valid TOC sequence, the packet's TOC sequence was not
compatible with previously submitted packets (because the coding mode, audio
bandwidth, frame size, or channel count did not match), or adding this packet would
increase the total amount of audio stored in the repacketizer state to more than 120
ms.

4.3.3.6 opus_repacketizer_create()

OpusRepacketizer * opus_repacketizer_create (

void)

Allocates memory and initializes the new repacketizer with opus_repacketizer_init().

4.3.3.7 opus_repacketizer_destroy()

void opus_repacketizer_destroy (

OpusRepacketizer * rp)

Frees an OpusRepacketizer allocated by opus_repacketizer_create().

Parameters

‘ in ‘ 7o) ‘ OpusRepacketizerx: State to be freed.

4.3.3.8 opus_repacketizer_get_nb_frames()

int opus_repacketizer_get_nb_frames (

OpusRepacketizer * rp)

Return the total number of frames contained in packet data submitted to the repacketizer state so far via
opus_repacketizer_cat() since the last call to opus_repacketizer_init() or opus_repacketizer_create().

This defines the valid range of packets that can be extracted with opus_repacketizer_out_range() or opus_repacketizer_out().

Parameters

‘ o ‘ OpusRepacketizersx: The repacketizer state containing the frames.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

38 Topic Documentation

Returns

The total number of frames contained in the packet data submitted to the repacketizer state.

4.3.3.9 opus_repacketizer_get_size()

int opus_repacketizer_get_size (

void)

Gets the size of an OpusRepacketizer structure.

Returns

The size in bytes.

4.3.3.10 opus_repacketizer_init()

OpusRepacketizer * opus_repacketizer_init (

OpusRepacketizer * rp)
(Re)initializes a previously allocated repacketizer state.

The state must be at least the size returned by opus_repacketizer_get_size(). This can be used for applications which
use their own allocator instead of malloc(). It must also be called to reset the queue of packets waiting to be repacketized,
which is necessary if the maximum packet duration of 120 ms is reached or if you wish to submit packets with a different
Opus configuration (coding mode, audio bandwidth, frame size, or channel count). Failure to do so will prevent a new
packet from being added with opus_repacketizer_cat().

See also

opus_repacketizer_create
opus_repacketizer_get_size

opus_repacketizer_cat

Parameters

‘ p ‘ OpusRepacketizerx*: The repacketizer state to (re)initialize. ‘

Returns

A pointer to the same repacketizer state that was passed in.

4.3.3.11 opus_repacketizer_out()

opus_1int32 opus_repacketizer_out (

OpusRepacketizer * rp,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 39

unsigned char * data,

opus_int32 maxlen)
Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_caty().

This is a convenience routine that returns all the data submitted so far in a single packet. It is equivalent to calling
opus_repacketizer_out_range (rp, 0, opus_repacketizer_get_nb_frames (rp),
data, maxlen)

Parameters

p OpusRepacketizersx: The repacketizer state from which to construct the new packet.

out | dafa const unsigned charsx: The buffer in which to store the output packet.

maxlen | opus_1int32: The maximum number of bytes to store in the output buffer. In order to
guarantee success, this should be at least
1277«xopus_repacketizer_get_nb_frames (rp). However,
lxopus_repacketizer_get_nb_frames (rp) plus the size of all packet data
submitted to the repacketizer since the last call to opus_repacketizer_init() or
opus_repacketizer_create() is also sufficient, and possibly much smaller.

Returns

The total size of the output packet on success, or an error code on failure.

Return values

OPUS_BUFFER _TOO_SMALL | maxlen was insufficient to contain the complete output packet.

4.3.3.12 opus_repacketizer_out_range()

opus_1int32 opus_repacketizer_out_range (
OpusRepacketizer *x rp,
int begin,
int end,
unsigned char * data,

opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_caty().

Parameters
p OpusRepacketizerx*: The repacketizer state from which to construct the new packet.
begin int: The index of the first frame in the current repacketizer state to include in the output.
end int: One past the index of the last frame in the current repacketizer state to include in the
output.
out | data const unsigned charx: The buffer in which to store the output packet.

maxlen | opus_int32: The maximum number of bytes to store in the output buffer. In order to
guarantee success, this should be at least 1276 for a single frame, or for multiple frames,
1277% (end-begin). However, 1x (end-begin) plus the size of all packet data submitted
to the repacketizer since the last call to opus_repacketizer_init() or opus_repacketizer_create()
Generated on Mon Dec 15/24254 Rs%# 40 fbicRpns b Rexpesosibly much smaller.

40 Topic Documentation

Returns

The total size of the output packet on success, or an error code on failure.

Return values

OPUS_BAD ARG | [begin, end) was an invalid range of frames (begin < 0, begin >= end, or end >
opus_repacketizer_get_nb_frames()).

OPUS_BUFFER_TOO_SMALL | maxlen was insufficient to contain the complete output packet.

4.4 Error codes

Macros

+ #define OPUS_OK

No error.
» #define OPUS_BAD_ ARG

One or more invalid/out of range arguments.

+ #define OPUS_BUFFER_TOO_SMALL

Not enough bytes allocated in the buffer.
« #define OPUS_INTERNAL_ERROR

An internal error was detected.
« #tdefine OPUS_INVALID_PACKET

The compressed data passed is corrupted.
 #define OPUS_UNIMPLEMENTED

Invalid/unsupported request number.
+ #define OPUS_INVALID_STATE

An encoder or decoder structure is invalid or already freed.
« #define OPUS_ALLOC_FAIL

Memory allocation has failed.

4.4.1 Detailed Description

4.4.2 Macro Definition Documentation

4.4.21 OPUS_ALLOC_FAIL

#define OPUS_ALLOC_FAIL

Memory allocation has failed.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.4 Error codes

a1

4.4.2.2 OPUS_BAD_ARG

#define OPUS_BAD_ARG

One or more invalid/out of range arguments.

4.4.2.3 OPUS_BUFFER_TOO_ SMALL

#define OPUS_BUFFER_TOO_SMALL

Not enough bytes allocated in the buffer.

4.4.2.4 OPUS_INTERNAL_ERROR

#define OPUS_INTERNAL_ERROR

An internal error was detected.

4.4.2.5 OPUS_INVALID_PACKET

#define OPUS_INVALID_PACKET

The compressed data passed is corrupted.

4.4.2.6 OPUS_INVALID_STATE

#define OPUS_INVALID_STATE

An encoder or decoder structure is invalid or already freed.

4.42.7 OPUS_OK

#define OPUS_OK

No error.

4.4.2.8 OPUS_UNIMPLEMENTED

#define OPUS_UNIMPLEMENTED

Invalid/unsupported request number.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

42

Topic Documentation

4.5 Pre-defined values for CTL interface

Macros

+ #define OPUS_AUTO

Auto/default setting.
#define OPUS_BITRATE_MAX

Maximum bitrate.
#define OPUS_APPLICATION_VOIP

Best for most VolP/videoconference applications where listening quality and intelligibility matter most.

#define OPUS_APPLICATION_AUDIO

Best for broadcast/high-fidelity application where the decoded audio should be as close as possible to the input.

#define OPUS_APPLICATION_RESTRICTED_LOWDELAY

Only use when lowest-achievable latency is what matters most.
#define OPUS_APPLICATION_RESTRICTED_SILK 2052

Experts only: forces SILK encoding; don't allocate CELT state at all.
#define OPUS_APPLICATION_RESTRICTED_CELT 2053

Experts only: forces CELT encoding; don't allocate SILK state at all.

#define OPUS_SIGNAL_VOICE 3001
Signal being encoded is voice.

#define OPUS_SIGNAL_MUSIC 3002
Signal being encoded is music.

#define OPUS_BANDWIDTH_NARROWBAND
4 kHz bandpass

#define OPUS_BANDWIDTH_MEDIUMBAND
6 kHz bandpass

#define OPUS_BANDWIDTH_WIDEBAND
8 kHz bandpass

#define OPUS_BANDWIDTH_SUPERWIDEBAND
12 kHz bandpass

#define OPUS_BANDWIDTH_FULLBAND
20 kHz bandpass

#define OPUS_FRAMESIZE_ARG 5000
Select frame size from the argument (default)

#define OPUS_FRAMESIZE_2_5_MS 5001
Use 2.5 ms frames.

#define OPUS_FRAMESIZE_5_MS 5002
Use 5 ms frames.

#define OPUS_FRAMESIZE_10_MS 5003
Use 10 ms frames.

#define OPUS_FRAMESIZE_20_MS 5004
Use 20 ms frames.

#define OPUS_FRAMESIZE_40_MS 5005
Use 40 ms frames.

#define OPUS_FRAMESIZE_60_MS 5006

Use 60 ms frames.
#define OPUS_FRAMESIZE_80_MS 5007

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.5 Pre-defined values for CTL interface

43

Use 80 ms frames.
 #define OPUS_FRAMESIZE_100_MS 5008

Use 100 ms frames.
« #define OPUS_FRAMESIZE_120 MS 5009

Use 120 ms frames.

4.5.1 Detailed Description

See also

Generic CTLs, Encoder related CTLs

4.5.2 Macro Definition Documentation

4.5.2.1 OPUS_APPLICATION_AUDIO

#define OPUS_APPLICATION_AUDIO

Best for broadcast/high-fidelity application where the decoded audio should be as close as possible to the input.

4.5.2.2 OPUS_APPLICATION_RESTRICTED_CELT

#define OPUS_APPLICATION_RESTRICTED_CELT 2053

Experts only: forces CELT encoding; don't allocate SILK state at all.

Disables OPUS_SET_APPLICATION.

4.5.2.3 OPUS_APPLICATION_RESTRICTED_LOWDELAY

#define OPUS_APPLICATION_RESTRICTED_LOWDELAY

Only use when lowest-achievable latency is what matters most.

Voice-optimized modes cannot be used.

4.5.2.4 OPUS_APPLICATION_RESTRICTED_SILK

#define OPUS_APPLICATION_RESTRICTED_SILK 2052

Experts only: forces SILK encoding; don't allocate CELT state at all.

Disables OPUS_SET_APPLICATION.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

44 Topic Documentation

4.5.2.5 OPUS_APPLICATION_VOIP

#define OPUS_APPLICATION_VOIP

Best for most VolP/videoconference applications where listening quality and intelligibility matter most.

4.5.2.6 OPUS_AUTO

#define OPUS_AUTO

Auto/default setting.

4.5.2.7 OPUS_BANDWIDTH_FULLBAND

#define OPUS_BANDWIDTH_FULLBAND

20 kHz bandpass

4.5.2.8 OPUS_BANDWIDTH_MEDIUMBAND

#define OPUS_BANDWIDTH_MEDIUMBAND

6 kHz bandpass

4.5.2.9 OPUS_BANDWIDTH_NARROWBAND

#define OPUS_BANDWIDTH_NARROWBAND

4 kHz bandpass

4.5.2.10 OPUS_BANDWIDTH_SUPERWIDEBAND

#define OPUS_BANDWIDTH_SUPERWIDEBAND

12 kHz bandpass

4.5.2.11 OPUS_BANDWIDTH_WIDEBAND

#define OPUS_BANDWIDTH_WIDEBAND

8 kHz bandpass

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.5 Pre-defined values for CTL interface

45

4.5.2.12 OPUS_BITRATE_MAX

#define OPUS_BITRATE_MAX

Maximum bitrate.

4.5.2.13 OPUS_FRAMESIZE_100_MS

#define OPUS_FRAMESIZE_100_MS 5008

Use 100 ms frames.

4.5.2.14 OPUS_FRAMESIZE_10_MS

#define OPUS_FRAMESIZE_10_MS 5003

Use 10 ms frames.

4.5.2.15 OPUS_FRAMESIZE_120_MS

#define OPUS_FRAMESIZE_120_MS 5009

Use 120 ms frames.

4.5.2.16 OPUS_FRAMESIZE_20_MS

#define OPUS_FRAMESIZE_20_MS 5004

Use 20 ms frames.

4.5.2.17 OPUS_FRAMESIZE_2_5 MS

#define OPUS_FRAMESIZE_2_ 5_MS 5001

Use 2.5 ms frames.

4.5.2.18 OPUS_FRAMESIZE_40_MS

#define OPUS_FRAMESIZE_40_MS 5005

Use 40 ms frames.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

46

Topic Documentation

4.5.2.19 OPUS_FRAMESIZE_5_MS

#define OPUS_FRAMESIZE_5_MS 5002

Use 5 ms frames.

4.5.2.20 OPUS_FRAMESIZE_60_MS

#define OPUS_FRAMESIZE_60_MS 5006

Use 60 ms frames.

4.5.2.21 OPUS_FRAMESIZE_80_MS

#define OPUS_FRAMESIZE_80_MS 5007

Use 80 ms frames.

4.5.2.22 OPUS_FRAMESIZE_ARG

#define OPUS_FRAMESIZE_ARG 5000

Select frame size from the argument (default)

4.5.2.23 OPUS_SIGNAL_MUSIC

#define OPUS_SIGNAL_MUSIC 3002

Signal being encoded is music.

4.5.2.24 OPUS_SIGNAL_VOICE

#define OPUS_SIGNAL_VOICE 3001

Signal being encoded is voice.

4.6 Encoder related CTLs

These are convenience macros for use with the opus_encode_ct1 interface.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs

Macros

+ #define OPUS_SET_COMPLEXITY(x)

Configures the encoder's computational complexity.
+ #define OPUS_GET_COMPLEXITY(x)

Gets the encoder's complexity configuration.
* #define OPUS_SET_BITRATE(x)

Configures the bitrate in the encoder.
« #define OPUS_GET_BITRATE(x)
Gets the encoder's bitrate configuration.
+ #define OPUS_SET_VBR(x)
Enables or disables variable bitrate (VBR) in the encoder.
+ #define OPUS_GET_VBR(x)
Determine if variable bitrate (VBR) is enabled in the encoder.
+ #define OPUS_SET_VBR_CONSTRAINT(x)

Enables or disables constrained VBR in the encoder.
« #define OPUS_GET_VBR_CONSTRAINT(x)

Determine if constrained VBR is enabled in the encoder.
+ #define OPUS_SET_FORCE_CHANNELS(x)
Configures mono/stereo forcing in the encoder.
+ #define OPUS_GET_FORCE_CHANNELS(x)
Gets the encoder's forced channel configuration.
+ #define OPUS_SET_MAX_BANDWIDTH(x)

Configures the maximum bandpass that the encoder will select automatically.
* #define OPUS_GET_MAX_BANDWIDTH(x)

Gets the encoder's configured maximum allowed bandpass.
+ #define OPUS_SET_BANDWIDTH(x)

Sets the encoder's bandpass to a specific value.
« #define OPUS_SET_SIGNAL(x)

Configures the type of signal being encoded.
+ #define OPUS_GET_SIGNAL(x)

Gets the encoder's configured signal type.
« #define OPUS_SET_APPLICATION(x)

Configures the encoder’s intended application.
+ #define OPUS_GET_APPLICATION(x)

Gets the encoder's configured application.
+ #define OPUS_GET_LOOKAHEAD(x)

Gets the total samples of delay added by the entire codec.
 #define OPUS_SET_INBAND_FEC(x)
Configures the encoder's use of inband forward error correction (FEC).
* #define OPUS_GET_INBAND_FEC(x)
Gets encoder's configured use of inband forward error correction.
* #define OPUS_SET_PACKET_LOSS_PERC(x)
Configures the encoder's expected packet loss percentage.
« #define OPUS_GET_PACKET_LOSS_PERC(x)

Gets the encoder's configured packet loss percentage.
+ #define OPUS_SET_DTX(x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

48 Topic Documentation

Configures the encoder's use of discontinuous transmission (DTX).
« #define OPUS_GET_DTX(x)

Gets encoder's configured use of discontinuous transmission.
« #define OPUS_SET_LSB_DEPTH(x)

Configures the depth of signal being encoded.
 #define OPUS_GET_LSB_DEPTH(x)

Gets the encoder's configured signal depth.
+ #define OPUS_SET_EXPERT_FRAME_DURATION(x)

Configures the encoder's use of variable duration frames.
« #define OPUS_GET_EXPERT_FRAME_DURATION(x)

Gets the encoder's configured use of variable duration frames.
« #define OPUS_SET_PREDICTION_DISABLED(x)

If set to 1, disables almost all use of prediction, making frames almost completely independent.
* #define OPUS_GET_PREDICTION_DISABLED(x)

Gets the encoder's configured prediction status.
 #define OPUS_SET_DRED_DURATION(x)

If non-zero, enables Deep Redundancy (DRED) and use the specified maximum number of 10-ms redundant frames.
+ #define OPUS_GET_DRED_DURATION(x)

Gets the encoder's configured Deep Redundancy (DRED) maximum number of frames.
« #define OPUS_SET_DNN_BLOB(data, len)

Provide external DNN weights from binary object (only when explicitly built without the weights)
+ #define OPUS_SET_QEXT(x)

If set to 1, enables quality extension (QEXT), otherwise disables it (default).
+ #define OPUS_GET_QEXT(x)

Gets the encoder's configured quality extension (QEXT).

4.6.1 Detailed Description

These are convenience macros for use with the opus_encode_ct1 interface.

They are used to generate the appropriate series of arguments for that call, passing the correct type, size and so on as
expected for each particular request.

Some usage examples:

int ret;
ret = opus_encoder_ctl (enc_ctx, OPUS_SET_BANDWIDTH (OPUS_AUTO));
(ret != OPUS_OK) return ret;

opus_int32 rate;
opus_encoder_ctl (enc_ctx, OPUS_GET_BANDWIDTH (&rate));

opus_encoder_ctl (enc_ctx, OPUS_RESET_STATE);

See also

Generic CTLs, Opus Encoder

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 49

4.6.2 Macro Definition Documentation

4.6.2.1 OPUS_GET_APPLICATION

#define OPUS_GET_APPLICATION (

X)

Gets the encoder's configured application.

See also

OPUS_SET_APPLICATION

Parameters

out | x | opus_int32 =x: Returns one of the following values:
OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.
OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum possible coding delay
by disabling certain modes of operation.

4.6.2.2 OPUS_GET_BITRATE

#define OPUS_GET_BITRATE (

x)

Gets the encoder's bitrate configuration.

See also

OPUS_SET_BITRATE

Parameters

out | x | opus_int32 =x: Returns the bitrate in bits per second. The default is determined based on the
number of channels and the input sampling rate.

4.6.2.3 OPUS_GET_COMPLEXITY

#define OPUS_GET_COMPLEXITY (

X)

Gets the encoder's complexity configuration.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

50 Topic Documentation

See also

OPUS_SET_COMPLEXITY

Parameters

‘ out ‘ X ‘ opus_1int32 x*: Returns a value in the range 0-10, inclusive.

4.6.2.4 OPUS_GET_DRED_DURATION

#define OPUS_GET_DRED_DURATION (

x)

Gets the encoder's configured Deep Redundancy (DRED) maximum number of frames.

4.6.2.5 OPUS_GET_DTX

#define OPUS_GET_DTX (

x)

Gets encoder's configured use of discontinuous transmission.

See also

OPUS_SET_DTX

Parameters

out | x | opus_int32 =x: Returns one of the following
values:

0 DTX disabled (default).

1 DTX enabled.

4.6.2.6 OPUS_GET_EXPERT_FRAME_DURATION

#define OPUS_GET_EXPERT_FRAME_DURATION (

x)

Gets the encoder's configured use of variable duration frames.

See also

OPUS_SET_EXPERT_FRAME_DURATION

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs

51

Parameters

out | x | opus_int32 =x: Returns one of the following values:

OPUS_FRAMESIZE_2 5 _MS Use 2.5 ms frames.
OPUS_FRAMESIZE_5 MS Use 5 ms frames.
OPUS_FRAMESIZE_10_MS Use 10 ms frames.
OPUS_FRAMESIZE_20_MS Use 20 ms frames.
OPUS_FRAMESIZE_40_MS Use 40 ms frames.
OPUS_FRAMESIZE_60_MS Use 60 ms frames.
OPUS_FRAMESIZE_80_MS Use 80 ms frames.
OPUS_FRAMESIZE_100_MS Use 100 ms frames.

OPUS_FRAMESIZE_120_MS Use 120 ms frames.

OPUS_FRAMESIZE_ARG Select frame size from the argument (default).

4.6.2.7 OPUS_GET_FORCE_CHANNELS

#define OPUS_GET_FORCE_CHANNELS (

X)

Gets the encoder's forced channel configuration.

See also

OPUS_SET_FORCE_CHANNELS

Parameters

out | x | opus_int32 *:
OPUS_AUTO Not forced (default)
1 Forced mono

2 Forced stereo

4.6.2.8 OPUS_GET_INBAND_FEC

#define OPUS_GET_INBAND_FEC (

x)

Gets encoder's configured use of inband forward error correction.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

52 Topic Documentation

See also

OPUS_SET_INBAND_FEC

Parameters

out | x | opus_int32 =x: Returns one of the following values:
0 Inband FEC disabled (default).

1 Inband FEC enabled. If the packet loss rate is sufficiently high, Opus will automatically switch to
SILK even at high rates to enable use of that FEC.

2 Inband FEC enabled, but does not necessarily switch to SILK if we have music.

4.6.2.9 OPUS_GET_LOOKAHEAD

#define OPUS_GET_LOOKAHEAD (

x)
Gets the total samples of delay added by the entire codec.

This can be queried by the encoder and then the provided number of samples can be skipped on from the start of the
decoder's output to provide time aligned input and output. From the perspective of a decoding application the real data
begins this many samples late.

The decoder contribution to this delay is identical for all decoders, but the encoder portion of the delay may vary from
implementation to implementation, version to version, or even depend on the encoder's initial configuration. Applications
needing delay compensation should call this CTL rather than hard-coding a value.

Parameters

‘ out ‘ X ‘ opus_1int32 *: Number of lookahead samples

4.6.2.10 OPUS_GET_LSB_DEPTH

#define OPUS_GET_LSB_DEPTH (

x)

Gets the encoder's configured signal depth.

See also

OPUS_SET_LSB_DEPTH

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 53

Parameters

‘ out ‘ X ‘ opus_1int32 x: Input precision in bits, between 8 and 24 (default: 24). ‘

4.6.2.11 OPUS_GET_MAX_BANDWIDTH

#define OPUS_GET_MAX_BANDWIDTH (

x)

Gets the encoder's configured maximum allowed bandpass.

See also

OPUS_SET_MAX_BANDWIDTH

Parameters

out | x | opus_int32 x: Allowed values:
OPUS_BANDWIDTH_NARROWBAND 4 kHz passband
OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband
OPUS_BANDWIDTH_WIDEBAND 8 kHz passband
OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband
OPUS_BANDWIDTH_FULLBAND 20 kHz passband (default)

4.6.2.12 OPUS_GET_PACKET_LOSS_PERC

#define OPUS_GET_PACKET_LOSS_PERC (

x)

Gets the encoder's configured packet loss percentage.

See also

OPUS_SET_PACKET_LOSS_PERC

Parameters

‘ out ‘ X ‘ opus_1int32 x: Returns the configured loss percentage in the range 0-100, inclusive (default: 0). ‘

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

54

Topic Documentation

4.6.2.13 OPUS_GET_PREDICTION_DISABLED

#define OPUS_GET_PREDICTION_DISABLED (

x)

Gets the encoder's configured prediction status.

See also

OPUS_SET_PREDICTION_DISABLED

Parameters

out

opus_1int32 x: Returns one of the following
values:

0 Prediction enabled (default).

1 Prediction disabled.

4.6.2.14 OPUS_GET_QEXT

#define OPUS_GET_QEXT (

X)

Gets the encoder's configured quality extension (QEXT).

4.6.2.15 OPUS_GET_SIGNAL

#define OPUS_GET_SIGNAL (

X)

Gets the encoder's configured signal type.

See also

OPUS_SET_SIGNAL

Parameters

out

opus_1int32 x*: Returns one of the following values:

OPUS_AUTO (default)

OPUS_SIGNAL_VOICE Bias thresholds towards choosing LPC or Hybrid modes.
OPUS_SIGNAL_MUSIC Bias thresholds towards choosing MDCT modes.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 55

4.6.2.16 OPUS_GET_VBR

#define OPUS_GET_VBR (

x)

Determine if variable bitrate (VBR) is enabled in the encoder.

See also

OPUS_SET_VBR
OPUS_GET_VBR_CONSTRAINT

Parameters

out | x | opus_int32 =x: Returns one of the following values:
0 Hard CBR.

1 VBR (default). The exact type of VBR may be retrieved via OPUS_GET_VBR_CONSTRAINT.

4.6.2.17 OPUS_GET_VBR_CONSTRAINT

#define OPUS_GET_VBR_CONSTRAINT (

X)

Determine if constrained VBR is enabled in the encoder.

See also

OPUS_SET_VBR_CONSTRAINT
OPUS_GET_VBR

Parameters

out | x | opus_int32 =x: Returns one of the following
values:

0 Unconstrained VBR.

1 Constrained VBR (default).

4.6.2.18 OPUS_SET_APPLICATION

#define OPUS_SET_APPLICATION (

X)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

56 Topic Documentation

Configures the encoder's intended application.

The initial value is a mandatory argument to the encoder_create function.

See also

OPUS_GET_APPLICATION

Parameters

in | x | opus_int32: Returns one of the following values:
OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.
OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum possible coding delay by
disabling certain modes of operation.

4.6.2.19 OPUS_SET_BANDWIDTH

#define OPUS_SET_BANDWIDTH (

x)
Sets the encoder's bandpass to a specific value.
This prevents the encoder from automatically selecting the bandpass based on the available bitrate. If an application
knows the bandpass of the input audio it is providing, it should normally use OPUS_SET_MAX_BANDWIDTH instead,

which still gives the encoder the freedom to reduce the bandpass when the bitrate becomes too low, for better overall
quality.

See also

OPUS_GET_BANDWIDTH

Parameters

in | x | opus_int32: Allowed values:

OPUS_AUTO (default)
OPUS_BANDWIDTH_NARROWBAND 4 kHz passband
OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband
OPUS_BANDWIDTH_WIDEBAND 8 kHz passband
OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband
OPUS_BANDWIDTH_FULLBAND 20 kHz passband

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 57

4.6.2.20 OPUS_SET_BITRATE

#define OPUS_SET_BITRATE (

x)
Configures the bitrate in the encoder.
Rates from 500 to 512000 bits per second are meaningful, as well as the special values OPUS_AUTO and

OPUS_BITRATE_MAX. The value OPUS_BITRATE MAX can be used to cause the codec to use as much rate as
it can, which is useful for controlling the rate by adjusting the output buffer size.

See also

OPUS_GET_BITRATE

Parameters

in | x | opus_int32: Bitrate in bits per second. The default is determined based on the number of channels
and the input sampling rate.

4.6.2.21 OPUS_SET_COMPLEXITY

#define OPUS_SET_COMPLEXITY (

x)
Configures the encoder's computational complexity.

The supported range is 0-10 inclusive with 10 representing the highest complexity.

See also

OPUS_GET_COMPLEXITY

Parameters

‘ in ‘ X ‘ opus_1int32: Allowed values: 0-10, inclusive.

4.6.2.22 OPUS_SET_DNN_BLOB

#define OPUS_SET_DNN_BLOB (
data,

len)

Provide external DNN weights from binary object (only when explicitly built without the weights)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

58 Topic Documentation

4.6.2.23 OPUS_SET_DRED_DURATION

#define OPUS_SET_DRED_DURATION (

x)

If non-zero, enables Deep Redundancy (DRED) and use the specified maximum number of 10-ms redundant frames.

4.6.2.24 OPUS_SET DTX

#define OPUS_SET_DTX (

x)

Configures the encoder's use of discontinuous transmission (DTX).

Note

This is only applicable to the LPC layer

See also

OPUS_GET_DTX

Parameters

in | x | opus_int32: Allowed
values:

0 Disable DTX (default).

1 Enabled DTX.

4.6.2.25 OPUS_SET EXPERT_FRAME_DURATION

#define OPUS_SET_EXPERT_FRAME_DURATION (

x)
Configures the encoder's use of variable duration frames.

When variable duration is enabled, the encoder is free to use a shorter frame size than the one requested in the opus«
_encodex() call. It is then the user's responsibility to verify how much audio was encoded by checking the ToC byte of
the encoded packet. The part of the audio that was not encoded needs to be resent to the encoder for the next call. Do
not use this option unless you really know what you are doing.

See also

OPUS_GET_EXPERT_FRAME_DURATION

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 59

Parameters

in | x | opus_int32: Allowed values:

OPUS_FRAMESIZE_ARG Select frame size from the argument (default).
OPUS_FRAMESIZE_2 5 MS Use 2.5 ms frames.
OPUS_FRAMESIZE_5 MS Use 5 ms frames.
OPUS_FRAMESIZE_10_MS Use 10 ms frames.
OPUS_FRAMESIZE_20 MS Use 20 ms frames.
OPUS_FRAMESIZE_40 MS Use 40 ms frames.
OPUS_FRAMESIZE_60_MS Use 60 ms frames.
OPUS_FRAMESIZE_80 MS Use 80 ms frames.
OPUS_FRAMESIZE_100_MS Use 100 ms frames.

OPUS_FRAMESIZE_120_MS Use 120 ms frames.

4.6.2.26 OPUS_SET_FORCE_CHANNELS

#define OPUS_SET_FORCE_CHANNELS (

x)
Configures mono/stereo forcing in the encoder.

This can force the encoder to produce packets encoded as either mono or stereo, regardless of the format of the input
audio. This is useful when the caller knows that the input signal is currently a mono source embedded in a stereo
stream.

See also

OPUS_GET_FORCE_CHANNELS

Parameters

in | x | opus_int32: Allowed values:
OPUS_AUTO Not forced (default)
1 Forced mono

2 Forced stereo

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

60 Topic Documentation

4.6.2.27 OPUS_SET_INBAND_FEC

#define OPUS_SET_INBAND_FEC (

x)

Configures the encoder's use of inband forward error correction (FEC).

Note

This is only applicable to the LPC layer

See also

OPUS_GET_INBAND_FEC

Parameters

in | x | opus_int32: Allowed values:
0 Disable inband FEC (default).

1 Inband FEC enabled. If the packet loss rate is sufficiently high, Opus will automatically switch to SILK
even at high rates to enable use of that FEC.

2 Inband FEC enabled, but does not necessarily switch to SILK if we have music.

4.6.2.28 OPUS_SET LSB_DEPTH

#define OPUS_SET_LSB_DEPTH (

x)
Configures the depth of signal being encoded.

This is a hint which helps the encoder identify silence and near-silence. It represents the number of significant bits of
linear intensity below which the signal contains ignorable quantization or other noise.

For example, OPUS_SET_LSB_DEPTH(14) would be an appropriate setting for G.711 u-law input. OPUS_SET_LSB_DEPTH(16)
would be appropriate for 16-bit linear pcm input with opus_encode_float().

When using opus_encode() instead of opus_encode_float(), or when libopus is compiled for fixed-point, the encoder
uses the minimum of the value set here and the value 16.

See also

OPUS_GET_LSB_DEPTH

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 61

Parameters

\ in \ X \ opus_int32: Input precision in bits, between 8 and 24 (default: 24). \

4.6.2.29 OPUS_SET_MAX_BANDWIDTH

#define OPUS_SET_MAX_ BANDWIDTH (

x)
Configures the maximum bandpass that the encoder will select automatically.
Applications should normally use this instead of OPUS_SET_BANDWIDTH (leaving that set to the default,

OPUS_AUTO). This allows the application to set an upper bound based on the type of input it is providing, but
still gives the encoder the freedom to reduce the bandpass when the bitrate becomes too low, for better overall quality.

See also

OPUS_GET_MAX_BANDWIDTH

Parameters

in | x | opus_int32: Allowed values:
OPUS_BANDWIDTH_NARROWBAND 4 kHz passband
OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband
OPUS_BANDWIDTH_WIDEBAND 8 kHz passband
OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband
OPUS_BANDWIDTH_FULLBAND 20 kHz passband (default)

4.6.2.30 OPUS_SET_PACKET_LOSS_PERC

#define OPUS_SET_PACKET_LOSS_PERC (

x)
Configures the encoder's expected packet loss percentage.

Higher values trigger progressively more loss resistant behavior in the encoder at the expense of quality at a given
bitrate in the absence of packet loss, but greater quality under loss.

See also

OPUS_GET_PACKET_LOSS_PERC

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

62 Topic Documentation

Parameters

‘ in ‘ X ‘ opus_1int32: Loss percentage in the range 0-100, inclusive (default: 0). ‘

4.6.2.31 OPUS_SET_PREDICTION_DISABLED

#define OPUS_SET_PREDICTION_DISABLED (

x)
If set to 1, disables almost all use of prediction, making frames almost completely independent.

This reduces quality.

See also

OPUS_GET_PREDICTION_DISABLED

Parameters

in | x | opus_int32: Allowed
values:

0 Enable prediction (default).

1 Disable prediction.

4.6.2.32 OPUS_SET QEXT

#define OPUS_SET_QEXT (
X)

If set to 1, enables quality extension (QEXT), otherwise disables it (default).

Warning: This will hurt audio quality unless operating at a very high bitrate.

4.6.2.33 OPUS_SET_SIGNAL

#define OPUS_SET_SIGNAL (
X)

Configures the type of signal being encoded.

This is a hint which helps the encoder's mode selection.

See also

OPUS_GET_SIGNAL

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 63

Parameters

in | x | opus_int32: Allowed values:
OPUS_AUTO (default)
OPUS_SIGNAL_VOICE Bias thresholds towards choosing LPC or Hybrid modes.

OPUS_SIGNAL_MUSIC Bias thresholds towards choosing MDCT modes.

4.6.2.34 OPUS_SET_VBR

#define OPUS_SET_VBR (

x)
Enables or disables variable bitrate (VBR) in the encoder.

The configured bitrate may not be met exactly because frames must be an integer number of bytes in length.

See also

OPUS_GET_VBR
OPUS_SET_VBR_CONSTRAINT

Parameters

in | x | opus_int32: Allowed values:
0 Hard CBR. For LPC/hybrid modes at very low bit-rate, this can cause noticeable quality degradation.

1 VBR (default). The exact type of VBR is controlled by OPUS_SET VBR_CONSTRAINT.

4.6.2.35 OPUS_SET_VBR_CONSTRAINT

#define OPUS_SET_VBR_CONSTRAINT (

x)
Enables or disables constrained VBR in the encoder.

This setting is ignored when the encoder is in CBR mode.

Warning

Only the MDCT mode of Opus currently heeds the constraint. Speech mode ignores it completely, hybrid mode
may fail to obey it if the LPC layer uses more bitrate than the constraint would have permitted.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

64 Topic Documentation

See also

OPUS_GET_VBR_CONSTRAINT
OPUS_SET_VBR

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.7 Generic CTLs 65

Parameters

in | x | opus_int32: Allowed values:
0 Unconstrained VBR.

1 Constrained VBR (default). This creates a maximum of one frame of buffering delay assuming a
transport with a serialization speed of the nominal bitrate.

4.7 Generic CTLs

These macros are used with the opus_decoder_ctl and opus_encoder_ct1 calls to generate a particular
request.

Macros

« #define OPUS_RESET_STATE

Resets the codec state to be equivalent to a freshly initialized state.
« #define OPUS_GET_FINAL_RANGE(x)

Gets the final state of the codec's entropy coder.
* #define OPUS_GET_BANDWIDTH(x)

Gets the encoder's configured bandpass or the decoder's last bandpass.
« #define OPUS_GET_SAMPLE_RATE(x)

Gets the sampling rate the encoder or decoder was initialized with.
« #define OPUS_SET_PHASE_INVERSION_DISABLED(x)

If set to 1, disables the use of phase inversion for intensity stereo, improving the quality of mono downmixes, but slightly
reducing normal stereo quality.
« #define OPUS_GET_PHASE_INVERSION_DISABLED(x)

Gets the encoder's configured phase inversion status.
 #define OPUS_GET_IN_DTX(x)

Gets the DTX state of the encoder.

4.7.1 Detailed Description

These macros are used with the opus_decoder_ctl and opus_encoder_ctl calls to generate a particular
request.

When called on an OpusDecoder they apply to that particular decoder instance. When called on an OpusEncoder
they apply to the corresponding setting on that encoder instance, if present.

Some usage examples:

int ret;

opus_int32 pitch;

ret = opus_decoder_ctl (dec_ctx, OPUS_GET_PITCH (&pitch));
- (ret == OPUS_OK) 1t urn ret;

opus_encoder_ctl (enc_ctx, OPUS_RESET_STATE);
opus_decoder_ctl (dec_ctx, OPUS_RESET_STATE);

opus_1int32 enc_bw, dec_bw;
opus_encoder_ctl (enc_ctx, OPUS_GET_BANDWIDTH (&enc_bw)) ;
opus_decoder_ctl (dec_ctx, OPUS_GET_BANDWIDTH (&dec_bw)) ;
© (enc_bw != dec_bw) {
printf ("packet bandwidth mismatch!\n");
}

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

66 Topic Documentation

See also

Opus Encoder, opus_decoder_ctl, opus_encoder_ctl, Decoder related CTLs, Encoder related CTLs

4.7.2 Macro Definition Documentation

4.7.21 OPUS_GET_BANDWIDTH

#define OPUS_GET_BANDWIDTH (

x)

Gets the encoder's configured bandpass or the decoder's last bandpass.

See also

OPUS_SET_BANDWIDTH

Parameters

out | x | opus_int32 =x: Returns one of the following values:
OPUS_AUTO (default)
OPUS_BANDWIDTH_NARROWBAND 4 kHz passband
OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband
OPUS_BANDWIDTH_WIDEBAND 8 kHz passband
OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband
OPUS_BANDWIDTH_FULLBAND 20 kHz passband

4.7.2.2 OPUS_GET_FINAL_RANGE

#define OPUS_GET_FINAL_RANGE (

x)
Gets the final state of the codec's entropy coder.

This is used for testing purposes, The encoder and decoder state should be identical after coding a payload (assuming
no data corruption or software bugs)

Parameters

‘ out ‘ X ‘ opus_uint32 x*: Entropy coder state

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.7 Generic CTLs 67

4.7.2.3 OPUS_GET_IN_DTX

#define OPUS_GET_IN_DTX (

x)
Gets the DTX state of the encoder.

Returns whether the last encoded frame was either a comfort noise update during DTX or not encoded because of DTX.

Parameters

out | x | opus_int32 =x: Returns one of the following
values:

0 The encoder is not in DTX.

1 The encoder is in DTX.

4.7.2.4 OPUS_GET_PHASE_INVERSION_DISABLED

#define OPUS_GET_PHASE_INVERSION_DISABLED (

x)

Gets the encoder's configured phase inversion status.

See also

OPUS_SET_PHASE_INVERSION_DISABLED

Parameters

out | x | opus_int32 =x: Returns one of the following
values:

0 Stereo phase inversion enabled (default).

1 Stereo phase inversion disabled.

4.7.2.5 OPUS_GET_SAMPLE_RATE

#define OPUS_GET_SAMPLE_RATE (

x)
Gets the sampling rate the encoder or decoder was initialized with.

This simply returns the F's value passed to opus_encoder_init() or opus_decoder_init().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

68 Topic Documentation

Parameters

‘ out ‘ X ‘ opus_int32 *: Sampling rate of encoder or decoder.

4.7.2.6 OPUS_RESET_STATE

#define OPUS_RESET_STATE
Resets the codec state to be equivalent to a freshly initialized state.

This should be called when switching streams in order to prevent the back to back decoding from giving different results
from one at a time decoding.

4.7.2.7 OPUS_SET_PHASE_INVERSION_DISABLED

#define OPUS_SET_PHASE_INVERSION_DISABLED (

x)

If set to 1, disables the use of phase inversion for intensity stereo, improving the quality of mono downmixes, but slightly
reducing normal stereo quality.

Disabling phase inversion in the decoder does not comply with RFC 6716, although it does not cause any interoperability
issue and is expected to become part of the Opus standard once RFC 6716 is updated by draft-ietf-codec-opus-update.

See also

OPUS_GET_PHASE_INVERSION_DISABLED

Parameters

in | x | opus_int32: Allowed values:
0 Enable phase inversion (default).

1 Disable phase inversion.

4.8 Decoder related CTLs

Macros

+ #define OPUS_SET_GAIN(x)

Configures decoder gain adjustment.
« #define OPUS_GET_GAIN(x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.8 Decoder related CTLs 69

Gets the decoder's configured gain adjustment.
« #define OPUS_GET_LAST_PACKET_DURATION(x)

Gets the duration (in samples) of the last packet successfully decoded or concealed.
« #define OPUS_GET_PITCH(x)

Gets the pitch of the last decoded frame, if available.
 #define OPUS_SET_OSCE_BWE(x)

Enables blind bandwidth extension for wideband signals if decoding sampling rate is 48 kHz.
+ #define OPUS_GET_OSCE_BWE(x)

Gets blind bandwidth extension flag for wideband signals if decoding sampling rate is 48 kHz.
« #define OPUS_SET_IGNORE_EXTENSIONS(x)

If set to 1, the decoder will ignore all extensions found in the padding area (does not affect DRED, which is decoded
separately).

+ #define OPUS_GET_IGNORE_EXTENSIONS(x)

Gets whether the decoder is ignoring extensions.

4.8.1 Detailed Description

See also

Generic CTLs, Encoder related CTLs, Opus Decoder

4.8.2 Macro Definition Documentation

4.82.1 OPUS_GET_GAIN

#define OPUS_GET_GAIN (

x)

Gets the decoder's configured gain adjustment.

See also

OPUS_SET_GAIN

Parameters

‘ out ‘ X ‘ opus_1int32 *: Amount to scale PCM signal by in Q8 dB units.

4.8.2.2 OPUS_GET_IGNORE_EXTENSIONS

#define OPUS_GET_IGNORE_EXTENSIONS (

X)

Gets whether the decoder is ignoring extensions.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

70 Topic Documentation

4.8.2.3 OPUS_GET_LAST_PACKET DURATION

#define OPUS_GET_LAST_PACKET_DURATION (

x)

Gets the duration (in samples) of the last packet successfully decoded or concealed.

Parameters

‘ out ‘ X ‘ opus_1int32 *: Number of samples (at current sampling rate). ‘

4.8.2.4 OPUS_GET_OSCE_BWE

#define OPUS_GET_OSCE_BWE (

x)
Gets blind bandwidth extension flag for wideband signals if decoding sampling rate is 48 kHz.

Parameters

| out | x | opus_int32 x: 1 if bwe enabled, 0 if disabled.

4.8.25 OPUS_GET PITCH

#define OPUS_GET_PITCH (

x)
Gets the pitch of the last decoded frame, if available.

This can be used for any post-processing algorithm requiring the use of pitch, e.g. time stretching/shortening. If the last
frame was not voiced, or if the pitch was not coded in the frame, then zero is returned.

This CTL is only implemented for decoder instances.

Parameters

\ out \ X \ opus_int32 x: pitch period at 48 kHz (or 0 if not available) \

4.8.2.6 OPUS_SET_GAIN

#define OPUS_SET_GAIN (

x)

Configures decoder gain adjustment.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.9 Opus library information functions 71

Scales the decoded output by a factor specified in Q8 dB units. This has a maximum range of -32768 to 32767 inclusive,
and returns OPUS_BAD_ARG otherwise. The default is zero indicating no adjustment. This setting survives decoder
reset.

gain = pow(10, x/(20.0%256))

Parameters

‘ in ‘ X ‘ opus_int32: Amount to scale PCM signal by in Q8 dB units.

4.8.2.7 OPUS_SET_IGNORE_EXTENSIONS

#define OPUS_SET_IGNORE_EXTENSIONS (

x)

If set to 1, the decoder will ignore all extensions found in the padding area (does not affect DRED, which is decoded
separately).

4.8.2.8 OPUS_SET_OSCE_BWE

#define OPUS_SET_OSCE_BWE (

x)
Enables blind bandwidth extension for wideband signals if decoding sampling rate is 48 kHz.

Parameters

‘ in ‘ X ‘ opus_1int32 : 1 enables bandwidth extension, 0 disables it. The default is 0.

4.9 Opus library information functions

Functions

» const char x opus_strerror (int error)

Converts an opus error code into a human readable string.
» const char % opus_get_version_string (void)

Gets the libopus version string.

4.9.1 Detailed Description

4.9.2 Function Documentation
4.9.2.1 opus_get_version_string()

const char * opus_get_version_string (

void)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

72 Topic Documentation

Gets the libopus version string.

Applications may look for the substring "-fixed" in the version string to determine whether they have a fixed-point or
floating-point build at runtime.

Returns

Version string

4.9.2.2 opus_strerror()

const char * opus_strerror (

int error)

Converts an opus error code into a human readable string.

Parameters

\ in \ error\ int: Error number

Returns

Error string

4.10 Multistream specific encoder and decoder CTLs

These are convenience macros that are specific to the opus_multistream_encoder_ctl() and opus_multistream_decoder_ctl()
interface.

Macros

+ #define OPUS_MULTISTREAM_GET_ENCODER_STATE(x, y)

Gets the encoder state for an individual stream of a multistream encoder.
« #define OPUS_MULTISTREAM_GET_DECODER_STATE(x, y)

Gets the decoder state for an individual stream of a multistream decoder.

4.10.1 Detailed Description

These are convenience macros that are specific to the opus_multistream_encoder_ctl() and opus_multistream_decoder_ctl()
interface.

The CTLs from Generic CTLs, Encoder related CTLs, and Decoder related CTLs may be applied to a multistream
encoder or decoder as well. In addition, you may retrieve the encoder or decoder state for an specific stream
via OPUS_MULTISTREAM_GET_ENCODER_STATE or OPUS_MULTISTREAM_GET_DECODER_STATE and apply
CTLs to it individually.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 73

4.10.2 Macro Definition Documentation

4.10.2.1 OPUS_MULTISTREAM_GET_DECODER_STATE

#define OPUS_MULTISTREAM GET_DECODER_STATE (
X/

v)

Gets the decoder state for an individual stream of a multistream decoder.

Parameters

in X | opus_1int32: The index of the stream whose decoder you wish to retrieve. This must be
non-negative and less than the st reams parameter used to initialize the decoder.

out | y | OpusDecodersx*x: Returns a pointer to the given decoder state.

Return values

OPUS_BAD_ARG | The index of the requested stream was out of range.

4.10.2.2 OPUS_MULTISTREAM_GET_ENCODER_STATE

#define OPUS_MULTISTREAM_GET_ENCODER_STATE (
X,

v)

Gets the encoder state for an individual stream of a multistream encoder.

Parameters

in X | opus_int32: The index of the stream whose encoder you wish to retrieve. This must be
non-negative and less than the st reams parameter used to initialize the encoder.

out | ¥y | OpusEncoderxx: Returns a pointer to the given encoder state.

Return values

OPUS_BAD_ARG | The index of the requested stream was out of range.

4.11 Opus Multistream API

The multistream API allows individual Opus streams to be combined into a single packet, enabling support for up to 255
channels.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

74 Topic Documentation

Typedefs

* typedef struct OpusMSEncoder OpusMSEncoder

Opus multistream encoder state.
« typedef struct OpusMSDecoder OpusMSDecoder

Opus multistream decoder state.

Multistream encoder functions

* opus_int32 opus_multistream_encoder_get_size (int streams, int coupled_streams)

Gets the size of an OpusMSEncoder structure.
* opus_int32 opus_multistream_surround_encoder_get_size (int channels, int mapping_family)
» OpusMSEncoder * opus_multistream_encoder_create (opus_int32 Fs, int channels, int streams, int coupled_+«
streams, const unsigned char xmapping, int application, int xerror)
Allocates and initializes a multistream encoder state.
* OpusMSEncoder * opus_multistream_surround_encoder_create (opus_int32 Fs, int channels, int mapping_+«
family, int xstreams, int xcoupled_streams, unsigned char xmapping, int application, int xerror)
* int opus_multistream_encoder_init (OpusMSEncoder x*st, opus_int32 Fs, int channels, int streams, int coupled«
_streams, const unsigned char xmapping, int application)
Initialize a previously allocated multistream encoder state.
* int opus_multistream_surround_encoder_init (OpusMSEncoder xst, opus_int32 Fs, int channels, int mapping_+«
family, int xstreams, int xcoupled_streams, unsigned char xmapping, int application)
* int opus_multistream_encode (OpusMSEncoder xst, const opus_int16 xpcm, int frame_size, unsigned char
xdata, opus_int32 max_data_bytes)
Encodes a multistream Opus frame.
* int opus_multistream_encode24 (OpusMSEncoder xst, const opus_int32 xpcm, int frame_size, unsigned char
xdata, opus_int32 max_data_bytes)
Encodes a multistream Opus frame.
* int opus_multistream_encode_float (OpusMSEncoder *st, const float xpcm, int frame_size, unsigned char *data,
opus_int32 max_data_bytes)
Encodes a multistream Opus frame from floating point input.
+ void opus_multistream_encoder_destroy (OpusMSEncoder xst)

Frees an OpusMSEncoder allocated by opus_multistream_encoder_create().
* int opus_multistream_encoder_ctl (OpusMSEncoder xst, int request,...)

Perform a CTL function on a multistream Opus encoder.

Multistream decoder functions

* opus_int32 opus_multistream_decoder_get_size (int streams, int coupled_streams)
Gets the size of an OpusMSDecoder structure.
» OpusMSDecoder * opus_multistream_decoder_create (opus_int32 Fs, int channels, int streams, int coupled_+«
streams, const unsigned char xmapping, int xerror)
Allocates and initializes a multistream decoder state.
* int opus_multistream_decoder_init (OpusMSDecoder *st, opus_int32 Fs, int channels, int streams, int coupled«
_streams, const unsigned char xmapping)
Initialize a previously allocated decoder state object.

* int opus_multistream_decode (OpusMSDecoder xst, const unsigned char xdata, opus_int32 len, opus_int16
xpcm, int frame_size, int decode_fec)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 75

Decode a multistream Opus packet.
« int opus_multistream_decode24 (OpusMSDecoder *st, const unsigned char xdata, opus_int32 len, opus_int32
xpcm, int frame_size, int decode_fec)

Decode a multistream Opus packet.
« intopus_multistream_decode_float (OpusMSDecoder xst, const unsigned char xdata, opus_int32 len, float «xpcm,
int frame_size, int decode_fec)

Decode a multistream Opus packet with floating point output.
* int opus_multistream_decoder_ctl (OpusMSDecoder x*st, int request,...)

Perform a CTL function on a multistream Opus decoder.
+ void opus_multistream_decoder_destroy (OpusMSDecoder x*st)

Frees an OpusMSDecoder allocated by opus_multistream_decoder_create().

4.11.1 Detailed Description

The multistream API allows individual Opus streams to be combined into a single packet, enabling support for up to 255
channels.

Unlike an elementary Opus stream, the encoder and decoder must negotiate the channel configuration before the
decoder can successfully interpret the data in the packets produced by the encoder. Some basic information, such as
packet duration, can be computed without any special negotiation.

The format for multistream Opus packets is defined in REC 7845 and is based on the self-delimited Opus framing
described in Appendix B of RFC 6716. Normal Opus packets are just a degenerate case of multistream Opus
packets, and can be encoded or decoded with the multistream API by setting streams to 1 when initializing the
encoder or decoder.

Multistream Opus streams can contain up to 255 elementary Opus streams. These may be either "uncoupled" or
"coupled", indicating that the decoder is configured to decode them to either 1 or 2 channels, respectively. The streams
are ordered so that all coupled streams appear at the beginning.

A mapping table defines which decoded channel i should be used for each input/output (I/O) channel . This table

is typically provided as an unsigned char array. Let i = mapping[j] be the index for I/O channel j. If 1 <

2xcoupled_streams, then I/O channel j is encoded as the left channel of stream (i/2) if i is even, or as the

right channel of stream (1/2) if i is odd. Otherwise, I/O channel j is encoded as mono in stream (i - coupled«

_streams), unless it has the special value 255, in which case it is omitted from the encoding entirely (the decoder will

reproduce it as silence). Each value i must either be the special value 255 or be less than st reams + coupled«
streams.

The output channels specified by the encoder should use the Vorbis channel ordering. A decoder may wish
to apply an additional permutation to the mapping the encoder used to achieve a different output channel order (e.g. for
outputting in WAV order).

Each multistream packet contains an Opus packet for each stream, and all of the Opus packets in a single multistream
packet must have the same duration. Therefore the duration of a multistream packet can be extracted from the TOC
sequence of the first stream, which is located at the beginning of the packet, just like an elementary Opus stream:

int nb_samples;
int nb_frames;
nb_frames = opus_packet_get_nb_frames (data, len);
(nb_frames < 1)
nb_frames;
nb_samples = opus_packet_get_samples_per_frame (data, 48000) = nb_frames;

The general encoding and decoding process proceeds exactly the same as in the normal Opus Encoder and
Opus Decoder APIs. See their documentation for an overview of how to use the corresponding multistream functions.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

https://tools.ietf.org/html/rfc7845
https://tools.ietf.org/html/rfc6716
https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-810004.3.9

76 Topic Documentation

4.11.2 Typedef Documentation

4.11.2.1 OpusMSDecoder

typedef struct OpusMSDecoder OpusMSDecoder
Opus multistream decoder state.

This contains the complete state of a multistream Opus decoder. It is position independent and can be freely copied.

See also

opus_multistream_decoder_create

opus_multistream_decoder_init

4.11.2.2 OpusMSEncoder

typedef struct OpusMSEncoder OpusMSEncoder
Opus multistream encoder state.

This contains the complete state of a multistream Opus encoder. It is position independent and can be freely copied.

See also

opus_multistream_encoder_create

opus_multistream_encoder_init

4.11.3 Function Documentation

4.11.3.1 opus_multistream_decode()

int opus_multistream_decode (
OpusMSDecoder * st,
const unsigned char * data,
opus_int32 len,
opus_intl6é * pcm,
int frame_size,

int decode_fec)

Decode a multistream Opus packet.

Parameters
st OpusMSDecoderx*: Multistream decoder state.
in data const unsigned charsx: Input payload. Use a NULL pointer to indicate packet loss.
len opus_1int32: Number of bytes in payload.
out | pcm opus_int16x*: Output signal, with interleaveg samplasmdi s sbs 9242 FAVFULYy Doxygen

frame_sizexchannels samples.

frame_size | int: The number of samples per channel of available space in pcm. If this is less than the
maximum packet duration (120 ms; 5760 for 48kHz), this function will not be capable of

AAamm~AdA A~ v rmememlomta i A Ameams ~EDILD (AAYA~ NITIHHIN A D IAAAAAA famn 4\ Hla A

4.11 Opus Multistream API

Returns

Number of samples decoded on success or a negative error code (see Error codes) on failure.

4.11.3.2 opus_multistream_decode24()

int opus_multistream_decode24 (

OpusMSDecoder * st,

const unsigned char * data,

opus_int32 len,

opus_int32 * pcm,

int frame_size,

int decode_fec)

Decode a multistream Opus packet.

Parameters
st OpusMSDecodexrx*: Multistream decoder state.
in data const unsigned charsx: Input payload. Use a NULL pointer to indicate packet loss.
len opus_1int32: Number of bytes in payload.
out | pcm opus_int 32x*: Output signal, with interleaved samples representing (or slightly
exceeding) 24-bit values. This must contain room for frame_sizexchannels samples.
frame_size | int: The number of samples per channel of available space in pcm. If this is less than the
maximum packet duration (120 ms; 5760 for 48kHz), this function will not be capable of
decoding some packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then
frame_size needs to be exactly the duration of audio that is missing, otherwise the decoder
will not be in the optimal state to decode the next incoming packet. For the PLC and FEC
cases, frame_size must be a multiple of 2.5 ms.
decode_fec | int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.
Returns

Number of samples decoded on success or a negative error code (see Error codes) on failure.

4.11.3.3 opus_multistream_decode_float()

int opus_multistream_decode_float (

OpusMSDecoder * st,

const unsigned char * data,

opus_int32 len,

float * pcm,

int frame_ size,

int decode_fec)

Decode a multistream Opus packet with floating point output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

78 Topic Documentation
Parameters
st OpusMSDecoderx*: Multistream decoder state.
in data const unsigned charsx: Input payload. Use a NULL pointer to indicate packet loss.
len opus_1int32: Number of bytes in payload.
out | pcm opus_int16x*: Output signal, with interleaved samples. This must contain room for
frame_sizexchannels samples.
frame_size | int: The number of samples per channel of available space in pcm. If this is less than the
maximum packet duration (120 ms; 5760 for 48kHz), this function will not be capable of
decoding some packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then
frame_size needs to be exactly the duration of audio that is missing, otherwise the decoder
will not be in the optimal state to decode the next incoming packet. For the PLC and FEC
cases, frame_size must be a multiple of 2.5 ms.
decode fec | int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.
Returns

Number of samples decoded on success or a negative error code (see Error codes) on failure.

4.11.3.4 opus_multistream_decoder_create()

OpusMSDecoder * opus_multistream_decoder_create (

opus_int32 Fs,

int channels,

int streams,

int coupled streams,

const unsigned char * mapping,

int % error)

Allocates and initializes a multistream decoder state.

Call opus_multistream_decoder_destroy() to release this object when finished.

Parameters
Fs opus_1int32: Sampling rate to decode at (in Hz). This must be one of 8000, 12000,
16000, 24000, or 48000.
channels int: Number of channels to output. This must be at most 255. It may be different
from the number of coded channels (st reams + coupled_streams).
streams int: The total number of streams coded in the input. This must be no more than 255.

coupled_streams | int: Number of streams to decode as coupled (2 channel) streams. This must be no

larger than the total number of streams. Additionally, The total number of coded
channels (streams + coupled_streams) mustbe no more than 255.

in mapping const unsigned char[channels]: Mapping from coded channels to output
channels, as described in Opus Multistream API.
out | error int x: Returns OPUS_OK on success, or an error code (see Error codes) on failure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 79

4.11.3.5 opus_multistream_decoder_ctl()

int opus_multistream_decoder_ctl (
OpusMSDecoder * st,
int request,

)
Perform a CTL function on a multistream Opus decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

st OpusMSDecoderx*: Multistream decoder state.

request | This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs,
Decoder related CTLs, or Multistream specific encoder and decoder CTLs.

See also

Generic CTLs
Decoder related CTLs

Multistream specific encoder and decoder CTLs

4.11.3.6 opus_multistream_decoder_destroy()

void opus_multistream_decoder_destroy (

OpusMSDecoder * st)

Frees an OpusMSDecoder allocated by opus_multistream_decoder_create().

Parameters

‘ st ‘ OpusMSDecoder: Multistream decoder state to be freed. ‘

4.11.3.7 opus_multistream_decoder_get_size()

opus_1int32 opus_multistream_decoder_get_size (
int streams,

int coupled_streams)

Gets the size of an OpusMSDecoder structure.

Parameters

streams int: The total number of streams coded in the input. This must be no more than 255.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

80 Topic Documentation

Parameters

coupled_streams | int: Number streams to decode as coupled (2 channel) streams. This must be no larger than
the total number of streams. Additionally, The total number of coded channels (st reams +
coupled_streams) must be no more than 255.

Returns

The size in bytes on success, or a negative error code (see Error codes) on error.

4.11.3.8 opus_multistream_decoder_init()

int opus_multistream_decoder_init (
OpusMSDecoder * st,
opus_int32 Fs,
int channels,
int streams,
int coupled_streams,

const unsigned char * mapping)
Initialize a previously allocated decoder state object.

The memory pointed to by st must be at least the size returned by opus_multistream_encoder_get_size(). This is
intended for applications which use their own allocator instead of malloc. To reset a previously initialized state, use the
OPUS_RESET_STATE CTL.

See also

opus_multistream_decoder_create

opus_multistream_deocder_get_size

Parameters
st OpusMSEncoderx*: Multistream encoder state to initialize.
Fs opus_1int32: Sampling rate to decode at (in Hz). This must be one of 8000, 12000,
16000, 24000, or 48000.
channels int: Number of channels to output. This must be at most 255. It may be different from
the number of coded channels (st reams + coupled_streams).
streams int: The total number of streams coded in the input. This must be no more than 255.

coupled_streams | int: Number of streams to decode as coupled (2 channel) streams. This must be no
larger than the total number of streams. Additionally, The total number of coded
channels (streams + coupled_streams) mustbe no more than 255.

in | mapping const unsigned char[channels]: Mapping from coded channels to output
channels, as described in Opus Multistream API.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API

81

Returns

OPUS_OK on success, or an error code (see Error codes) on failure.

4.11.3.9 opus_multistream_encode()

int opus_multistream_encode (

OpusMSEncoder * st,

const opus_intl6 * pcm,

int frame_ size,

unsigned char * data,

opus_1int32 max_data_bytes)

Encodes a multistream Opus frame.

Parameters

st

OpusMSEncoderx*: Multistream encoder state.

in

pcm

const opus_int16x*: The input signal as interleaved samples. This must contain
frame_sizexchannels samples.

frame_size

int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out

data

unsigned charx*: Output payload. This must contain storage for at least
max_data_bytes.

in

max_data_bytes

opus_1int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.11.3.10 opus_multistream_encode24()

int opus_multistream_encode24 (

OpusMSEncoder * st,

const opus_int32 * pcm,

int frame_ size,

unsigned char * data,

opus_1int32 max_data_bytes)

Encodes a multistream Opus frame.

Parameters

L

st

OpusMSEncoderx*: Multistream encoder state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

82

Topic Documentation

Parameters

in pcm

const opus_int32x*: The input signal as interleaved samples representing (or
slightly exceeding) 24-bit values. This must contain frame_sizexchannels
samples.

frame_size

int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out | data

unsigned charx*: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes

opus_1int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.11.3.11 opus_multistream_encode_float()

int opus_multistream_encode_float (

OpusMSEncoder * st,

const float * pcm,

int frame_size,

unsigned char * data,

opus_int32 max_data_bytes)

Encodes a multistream Opus frame from floating point input.

Parameters

st

OpusMSEncoderx*: Multistream encoder state.

in pcm

const floatx*: The input signal as interleaved samples with a normal range of
+/-1.0. Samples with a range beyond +/-1.0 are supported but will be clipped by
decoders using the integer APl and should only be used if it is known that the far end
supports extended dynamic range. This must contain frame_sizexchannels
samples.

frame_size

int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out | data

unsigned charx*: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes

opus_1int 32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET BITRATE to control the bitrate.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API

83

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.11.3.12 opus_multistream_encoder_create()

OpusMSEncoder * opus_multistream_encoder_create (

opus_int32 Fs,

int channels,

int streams,

int coupled_streams,

const unsigned char * mapping,

int application,

int % error)

Allocates and initializes a multistream encoder state.

Call opus_multistream_encoder_destroy() to release this object when finished.

Parameters
Fs opus_1int 32: Sampling rate of the input signal (in Hz). This must be one of 8000,
12000, 16000, 24000, or 48000.
channels int: Number of channels in the input signal. This must be at most 255. It may be
greater than the number of coded channels (st reams + coupled_streams).
streams int: The total number of streams to encode from the input. This must be no more

than the number of channels.

coupled_streams

int: Number of coupled (2 channel) streams to encode. This must be no larger than
the total number of streams. Additionally, The total number of encoded channels
(streams + coupled_streams) must be no more than the number of input
channels.

in

mapping

const unsigned char[channels]: Mapping from encoded channels to input
channels, as described in Opus Multistream API. As an extra constraint, the
multistream encoder does not allow encoding coupled streams for which one channel
is unused since this is never a good idea.

application

int: The target encoder application. This must be one of the following:
OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.
OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum
possible coding delay by disabling certain modes of operation.

out

error

int *: Returns OPUS_OK on success, or an error code (see Error codes) on failure.

4.11.3.13 opus_multistream_encoder_ctl()

int opus_multistream_encoder_ctl (

OpusMSEncoder * st,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

84

Topic Documentation

int request,

)

Perform a CTL function on a multistream Opus encoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters
st OpusMSEncoderx*: Multistream encoder state.
request | This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs,
Encoder related CTLs, or Multistream specific encoder and decoder CTLs.
See also
Generic CTLs

Encoder related CTLs

Multistream specific encoder and decoder CTLs

4.11.3.14 opus_multistream_encoder_destroy()

void opus_multistream_encoder_destroy (

OpusMSEncoder * st)

Frees an OpusMSEncoder allocated by opus_multistream_encoder_create().

Parameters

‘ st ‘ OpusMSEncoderx*: Multistream encoder state to be freed. ‘

4.11.3.15 opus_multistream_encoder_get_size()

opus_1int32 opus_multistream encoder_get_size (

int streams,

int coupled _streams)

Gets the size of an OpusMSEncoder structure.

Parameters

Streams

int: The total number of streams to encode from the input. This must be no more than 255.

coupled_streams | int: Number of coupled (2 channel) streams to encode. This must be no larger than the total

number of streams. Additionally, The total number of encoded channels (streams +
coupled_streams) must be no more than 255.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 85

Returns

The size in bytes on success, or a negative error code (see Error codes) on error.

4.11.3.16 opus_multistream_encoder_init()

int opus_multistream_encoder_init (
OpusMSEncoder * st,
opus_int32 Fs,
int channels,
int streams,
int coupled_streams,
const unsigned char * mapping,

int application)
Initialize a previously allocated multistream encoder state.

The memory pointed to by st must be at least the size returned by opus_multistream_encoder_get_size(). This is
intended for applications which use their own allocator instead of malloc. To reset a previously initialized state, use the
OPUS_RESET_STATE CTL.

See also

opus_multistream_encoder_create

opus_multistream_encoder_get_size

Parameters
st OpusMSEncoderx*: Multistream encoder state to initialize.
Fs opus_1int32: Sampling rate of the input signal (in Hz). This must be one of 8000,
12000, 16000, 24000, or 48000.
channels int: Number of channels in the input signal. This must be at most 255. It may be
greater than the number of coded channels (st reams + coupled_streams).
streams int: The total number of streams to encode from the input. This must be no more than

the number of channels.

coupled_streams | int: Number of coupled (2 channel) streams to encode. This must be no larger than
the total number of streams. Additionally, The total number of encoded channels
(streams + coupled_streams) mustbe no more than the number of input
channels.

in | mapping const unsigned char[channels]: Mapping from encoded channels to input
channels, as described in Opus Multistream API. As an extra constraint, the
multistream encoder does not allow encoding coupled streams for which one channel is
unused since this is never a good idea.

application int: The target encoder application. This must be one of the following:
OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.
OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum possible
coding delay by disabling certain modes of operation.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

86 Topic Documentation

Returns

OPUS_OK on success, or an error code (see Error codes) on failure.

4.11.3.17 opus_multistream_surround_encoder_create()

OpusMSEncoder #* opus_multistream_surround_encoder_create (
opus_int32 Fs,
int channels,
int mapping_family,
int * streams,
int * coupled_streams,
unsigned char * mapping,
int application,

int % error)

4.11.3.18 opus_multistream_surround_encoder_get_size()

opus_1int32 opus_multistream_surround_encoder_get_size (
int channels,

int mapping_ family)

4.11.3.19 opus_multistream_surround_encoder_init()

int opus_multistream_surround_encoder_init (
OpusMSEncoder * st,
opus_int32 Fs,
int channels,
int mapping family,
int * streams,
int * coupled_streams,
unsigned char * mapping,

int application)

4.12 Opus Custom

Opus Custom is an optional part of the Opus specification and reference implementation which uses a distinct API from
the regular API and supports frame sizes that are not normally supported. Use of Opus Custom is discouraged for all
but very special applications for which a frame size different from 2.5, 5, 10, or 20 ms is needed (for either complexity or
latency reasons) and where interoperability is less important.

Typedefs

* typedef struct OpusCustomEncoder OpusCustomEncoder

Contains the state of an encoder.
* typedef struct OpusCustomDecoder OpusCustomDecoder

State of the decoder.
* typedef struct OpusCustomMode OpusCustomMode

The mode contains all the information necessary to create an encoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 87

Functions

» OpusCustomMode * opus_custom_mode_create (opus_int32 Fs, int frame_size, int *error)

Creates a new mode struct.
+ void opus_custom_mode_destroy (OpusCustomMode xmode)

Destroys a mode struct.
« int opus_custom_encoder_get_size (const OpusCustomMode xmode, int channels)
Gets the size of an OpusCustomEncoder structure.
» OpusCustomEncoder * opus_custom_encoder_create (const OpusCustomMode xmode, int channels, int xerror)

Creates a new encoder state.
« void opus_custom_encoder_destroy (OpusCustomEncoder sst)

Destroys an encoder state.
+ int opus_custom_encode_float (OpusCustomEncoder xst, const float xpcm, int frame_size, unsigned char
xcompressed, int maxCompressedBytes)
Encodes a frame of audio.
* int opus_custom_encode (OpusCustomEncoder xst, const opus_int16 xpcm, int frame_size, unsigned char
xcompressed, int maxCompressedBytes)
Encodes a frame of audio.
* int opus_custom_encode24 (OpusCustomEncoder xst, const opus_int32 xpcm, int frame_size, unsigned char
xcompressed, int maxCompressedBytes)
Encodes a frame of audio.
* int opus_custom_encoder_ctl (OpusCustomEncoder *xOPUS_RESTRICT st, int request,...)

Perform a CTL function on an Opus custom encoder.
* int opus_custom_decoder_get_size (const OpusCustomMode xmode, int channels)

Gets the size of an OpusCustomDecoder structure.

* int opus_custom_decoder_init (OpusCustomDecoder *st, const OpusCustomMode xmode, int channels)
Initializes a previously allocated decoder state The memory pointed to by st must be the size returned by opus_custom«
_decoder_get_size.

» OpusCustomDecoder * opus_custom_decoder_create (const OpusCustomMode xmode, int channels, int xerror)
Creates a new decoder state.

« void opus_custom_decoder_destroy (OpusCustomDecoder x*st)

Destroys a decoder state.
* int opus_custom_decode_float (OpusCustomDecoder xst, const unsigned char xdata, int len, float *pcm, int
frame_size)
Decode an opus custom frame with floating point output.
+ int opus_custom_decode (OpusCustomDecoder xst, const unsigned char xdata, int len, opus_int16 xpcm, int
frame_size)
Decode an opus custom frame.
* int opus_custom_decode24 (OpusCustomDecoder xst, const unsigned char xdata, int len, opus_int32 xpcm, int
frame_size)
Decode an opus custom frame.
* int opus_custom_decoder_ctl (OpusCustomDecoder *OPUS_RESTRICT st, int request,...)

Perform a CTL function on an Opus custom decoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

88 Topic Documentation

4.12.1 Detailed Description

Opus Custom is an optional part of the Opus specification and reference implementation which uses a distinct API from
the regular API and supports frame sizes that are not normally supported. Use of Opus Custom is discouraged for all
but very special applications for which a frame size different from 2.5, 5, 10, or 20 ms is needed (for either complexity or
latency reasons) and where interoperability is less important.

In addition to the interoperability limitations the use of Opus custom disables a substantial chunk of the codec and
generally lowers the quality available at a given bitrate. Normally when an application needs a different frame size from
the codec it should buffer to match the sizes but this adds a small amount of delay which may be important in some very
low latency applications. Some transports (especially constant rate RF transports) may also work best with frames of
particular durations.

Libopus only supports custom modes if they are enabled at compile time.

The Opus Custom APl is similar to the regular API but the opus_encoder_create and opus_decoder_create calls take
an additional mode parameter which is a structure produced by a call to opus_custom_mode_create. Both the encoder
and decoder must create a mode using the same sample rate (fs) and frame size (frame size) so these parameters must
either be signaled out of band or fixed in a particular implementation.

Similar to regular Opus the custom modes support on the fly frame size switching, but the sizes available depend on the
particular frame size in use. For some initial frame sizes on a single on the fly size is available.

4.12.2 Typedef Documentation
4.12.2.1 OpusCustomDecoder

typedef struct OpusCustomDecoder OpusCustomDecoder
State of the decoder.

One decoder state is needed for each stream. It is initialized once at the beginning of the stream. Do not re-initialize the
state for every frame.

Decoder state

4.12.2.2 OpusCustomEncoder

typedef struct OpusCustomEncoder OpusCustomEncoder
Contains the state of an encoder.

One encoder state is needed for each stream. It is initialized once at the beginning of the stream. Do not re-initialize the
state for every frame.

Encoder state

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 89

4.12.2.3 OpusCustomMode

typedef struct OpusCustomMode OpusCustomMode
The mode contains all the information necessary to create an encoder.

Both the encoder and decoder need to be initialized with exactly the same mode, otherwise the output will be corrupted.
The mode MUST NOT BE DESTROYED until the encoders and decoders that use it are destroyed as well.

Mode configuration

4.12.3 Function Documentation

4.12.3.1 opus_custom_decode()

int opus_custom_decode (
OpusCustomDecoder * st,
const unsigned char * data,
int len,
opus_intl6é * pcm,

int frame size)

Decode an opus custom frame.

Parameters
in st OpusCustomDecoderx*: Decoder state
in data charsx: Input payload. Use a NULL pointer to indicate packet loss
in len int: Number of bytes in payload
out | pcm opus_int16x*: Output signal (interleaved if 2 channels). length is
frame_sizexchannelsx*sizeof(opus_int16)
in frame_size | Number of samples per channel of available space in xpcm.

Returns

Number of decoded samples or Error codes

4.12.3.2 opus_custom_decode24()

int opus_custom_decode24 (
OpusCustomDecoder * st,
const unsigned char * data,
int len,
opus_int32 * pcm,

int frame_size)

Decode an opus custom frame.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

90 Topic Documentation

Parameters
in st OpusCustomDecoderx*: Decoder state
in data charsx: Input payload. Use a NULL pointer to indicate packet loss
in len int: Number of bytes in payload
out | pcm opus_1nt32x: Output signal (interleaved if 2 channels) representing (or slightly
exceeding) 24-bit values. length is frame_sizexchannelsxsizeof(opus_int32)
in frame_size | Number of samples per channel of available space in xpcm.

Returns

Number of decoded samples or Error codes

4.12.3.3 opus_custom_decode_float()

int opus_custom_decode_float (
OpusCustomDecoder * st,
const unsigned char * data,
int len,
float * pcm,

int frame_size)

Decode an opus custom frame with floating point output.

Parameters
in st OpusCustomDecoderx*: Decoder state
in data char=: Input payload. Use a NULL pointer to indicate packet loss
in len int: Number of bytes in payload
out | pcm floatx*: Output signal (interleaved if 2 channels). length is frame_sizexchannelsx*sizeof(float)
in frame_size | Number of samples per channel of available space in xpcm.

Returns

Number of decoded samples or Error codes

4.12.3.4 opus_custom_decoder_create()

OpusCustomDecoder * opus_custom_decoder_create (
const OpusCustomMode * mode,
int channels,

int % error)
Creates a new decoder state.

Each stream needs its own decoder state (can't be shared across simultaneous streams).

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom

91

Parameters

(must be the same characteristics as used for the encoder)

in mode OpusCustomMode: Contains all the information about the characteristics of the stream

in channels | int: Number of channels

out | error int*: Returns an error code

Returns

Newly created decoder state.

4.12.3.5 opus_custom_decoder_ctl()

int opus_custom_decoder_ctl (
OpusCustomDecoder *OPUS_RESTRICT st,
int request,

)

Perform a CTL function on an Opus custom decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

See also

Generic CTLs

4.12.3.6 opus_custom_decoder_destroy()

void opus_custom_decoder_destroy (

OpusCustomDecoder * st)

Destroys a decoder state.

Parameters

‘ in ‘ st‘ OpusCustomDecodersx: State to be freed.

4.12.3.7 opus_custom_decoder_get_size()

int opus_custom_decoder_get_size (
const OpusCustomMode * mode,

int channels)

Gets the size of an OpusCustomDecoder structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

92

Topic Documentation

Parameters
in | mode OpusCustomMode *: Mode configuration
in | channels | int: Number of channels
Returns
size

4.12.3.8 opus_custom_decoder_init()

int opus_custom_decoder_init (

OpusCustomDecoder * st,

const OpusCustomMode * mode,

int channels)

Initializes a previously allocated decoder state The memory pointed to by st must be the size returned by opus_custom«

_decoder_get_size.

This is intended for applications which use their own allocator instead of malloc.

See also

opus_custom_decoder_create(),opus_custom_decoder_get_size() To reset a previously initialized state use the
OPUS_RESET_STATE CTL.

Parameters
in | st OpusCustomDecoders*: Decoder state
in | mode OpusCustomMode *: Contains all the information about the characteristics of the stream
(must be the same characteristics as used for the encoder)
in | channels | int: Number of channels
Returns

OPUS_OK Success or Error codes

4.12.3.9 opus_custom_encode()

int opus_custom_encode (

OpusCustomEncoder * st,

const opus_intl6 * pcm,

int frame_ size,

unsigned char * compressed,

int maxCompressedBytes)

Encodes a frame of audio.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 93
Parameters
in st OpusCustomEncoderx*: Encoder state
in pcm opus_1int16x: PCM audio in signed 16-bit format (native endian). There must
be exactly frame_size samples per channel.
in frame_size int: Number of samples per frame of input signal
out | compressed char =*: The compressed data is written here. This may not alias pcm and
must be at least maxCompressedBytes long.
in maxCompressedBytes | int: Maximum number of bytes to use for compressing the frame (can change
from one frame to another)
Returns

Number of bytes written to "compressed". If negative, an error has occurred (see error codes). It is IMPORTANT
that the length returned be somehow transmitted to the decoder. Otherwise, no decoding is possible.

4.12.3.10 opus_custom_encode24()

int opus_custom_encode24 (

OpusCustomEncoder * st,

const opus_int32 *x pcm,

int frame_size,

unsigned char * compressed,

int maxCompressedBytes)

Encodes a frame of audio.

Parameters
in st OpusCustomEncoderx*: Encoder state
in pcm opus_1int32x: PCM audio in signed 32-bit format (native endian)
representing (or slightly exceeding) 24-bit values. There must be exactly
frame_size samples per channel.
in frame_size int: Number of samples per frame of input signal
out | compressed char x: The compressed data is written here. This may not alias pcm and
must be at least maxCompressedBytes long.
in maxCompressedBytes | int: Maximum number of bytes to use for compressing the frame (can change
from one frame to another)
Returns

Number of bytes written to "compressed". If negative, an error has occurred (see error codes). It is IMPORTANT
that the length returned be somehow transmitted to the decoder. Otherwise, no decoding is possible.

4.12.3.11

int opus_.

opus_custom_encode_float()

custom_encode_float

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

94 Topic Documentation

OpusCustomEncoder * st,
const float * pcm,

int frame_ size,

unsigned char * compressed,

int maxCompressedBytes)

Encodes a frame of audio.

Parameters

in st OpusCustomEncoderx*: Encoder state

in pcm floatx*: PCM audio in float format, with a normal range of +/-1.0. Samples
with a range beyond +/-1.0 are supported but will be clipped by decoders using
the integer API and should only be used if it is known that the far end supports
extended dynamic range. There must be exactly frame_size samples per
channel.

in frame_size int: Number of samples per frame of input signal

out | compressed char =*: The compressed data is written here. This may not alias pcm and
must be at least maxCompressedBytes long.

in maxCompressedBytes | int: Maximum number of bytes to use for compressing the frame (can change
from one frame to another)

Returns

Number of bytes written to "compressed". If negative, an error has occurred (see error codes). It is IMPORTANT
that the length returned be somehow transmitted to the decoder. Otherwise, no decoding is possible.

4.12.3.12 opus_custom_encoder_create()

OpusCustomEncoder * opus_custom_encoder_create (
const OpusCustomMode * mode,
int channels,

int * error)
Creates a new encoder state.

Each stream needs its own encoder state (can't be shared across simultaneous streams).

Parameters

in mode OpusCustomModex: Contains all the information about the characteristics of the stream
(must be the same characteristics as used for the decoder)

in channels | int: Number of channels
out | error intx*: Returns an error code

Returns

Newly created encoder state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom

95

4.12.3.13 opus_custom_encoder_ctl()

int opus_custom_encoder_ctl (
OpusCustomEncoder *OPUS_RESTRICT st,
int request,

)

Perform a CTL function on an Opus custom encoder.

Generally the request and subsequent arguments are generated by a convenience macro.

See also

Encoder related CTLs

4.12.3.14 opus_custom_encoder_destroy()

void opus_custom_encoder_destroy (

OpusCustomEncoder * st)

Destroys an encoder state.

Parameters

‘ in ‘ st‘ OpusCustomEncoders: State to be freed.

4.12.3.15 opus_custom_encoder_get_size()

int opus_custom_encoder_get_size (
const OpusCustomMode * mode,

int channels)

Gets the size of an OpusCustomEncoder structure.

Parameters

in | mode OpusCustomMode *: Mode configuration

in | channels | int: Number of channels

Returns

size

4.12.3.16 opus_custom_mode_create()

OpusCustomMode * opus_custom_mode_create (

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

96 Topic Documentation

opus_int32 Fs,
int frame_ size,

int * error)
Creates a new mode struct.

This will be passed to an encoder or decoder. The mode MUST NOT BE DESTROYED until the encoders and decoders
that use it are destroyed as well.

Parameters

in Fs int: Sampling rate (8000 to 96000 Hz)

in frame_size | int: Number of samples (per channel) to encode in each packet (64 - 1024, prime
factorization must contain zero or more 2s, 3s, or 5s and no other primes)

out | error intx*: Returned error code (if NULL, no error will be returned)

Returns

A newly created mode

4.12.3.17 opus_custom_mode_destroy()

void opus_custom_mode_destroy (

OpusCustomMode * mode)
Destroys a mode struct.

Only call this after all encoders and decoders using this mode are destroyed as well.

Parameters

‘ in ‘ mode ‘ OpusCustomModex: Mode to be freed.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 5

File Documentation

5.1 opus.h File Reference

Opus reference implementation API.

#include "opus_types.h"
#include "opus_defines.h"
Include dependency graph for opus.h:

opus.h

opus_defines.h

opus_types.h

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

98

File Documentation

This graph shows which files directly or indirectly include this file:

opus.h

opus_multistream.h

Typedefs

typedef struct OpusEncoder OpusEncoder

Opus encoder state.
typedef struct OpusDecoder OpusDecoder

Opus decoder state.
typedef struct OpusDREDDecoder OpusDREDDecoder

Opus DRED decoder.
typedef struct OpusDRED OpusDRED

Opus DRED state.
typedef struct OpusRepacketizer OpusRepacketizer

Functions

int opus_encoder_get_size (int channels)

Gets the size of an OpusEncoder structure.
OpusEncoder * opus_encoder_create (opus_int32 Fs, int channels, int application, int xerror)

Allocates and initializes an encoder state.
int opus_encoder_init (OpusEncoder xst, opus_int32 Fs, int channels, int application)
Initializes a previously allocated encoder state The memory pointed to by st must be at least the size returned by
opus_encoder_get size().
opus_int32 opus_encode (OpusEncoder xst, const opus_int16 xpcm, int frame_size, unsigned char *data,
opus_int32 max_data_bytes)
Encodes an Opus frame.
opus_int32 opus_encode24 (OpusEncoder xst, const opus_int32 xpcm, int frame_size, unsigned char xdata,
opus_int32 max_data_bytes)
Encodes an Opus frame.
opus_int32 opus_encode_float (OpusEncoder xst, const float xpcm, int frame_size, unsigned char xdata,
opus_int32 max_data_bytes)
Encodes an Opus frame from floating point input.
void opus_encoder_destroy (OpusEncoder x*st)

Frees an OpusEncoder allocated by opus_encoder_create().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.1

opus.h File Reference 99

int opus_encoder_ctl (OpusEncoder xst, int request,...)
Perform a CTL function on an Opus encoder.
int opus_decoder_get_size (int channels)
Gets the size of an OpusDecoder structure.
OpusDecoder * opus_decoder_create (opus_int32 Fs, int channels, int xerror)
Allocates and initializes a decoder state.
int opus_decoder_init (OpusDecoder xst, opus_int32 Fs, int channels)
Initializes a previously allocated decoder state.
int opus_decode (OpusDecoder *st, const unsigned char xdata, opus_int32 len, opus_int16 xpcm, int frame_size,
int decode_fec)
Decode an Opus packet.
int opus_decode24 (OpusDecoder =xst, const unsigned char xdata, opus_int32 len, opus_int32 xpcm, int frame«
_size, int decode_fec)
Decode an Opus packet.
int opus_decode_float (OpusDecoder xst, const unsigned char xdata, opus_int32 len, float xpcm, int frame_size,
int decode_fec)
Decode an Opus packet with floating point output.
int opus_decoder_ctl (OpusDecoder *st, int request,...)
Perform a CTL function on an Opus decoder.
void opus_decoder_destroy (OpusDecoder *st)
Frees an OpusDecoder allocated by opus_decoder_create().
int opus_dred_decoder_get_size (void)
Gets the size of an OpusDREDDecoder structure.
OpusDREDDecoder * opus_dred_decoder_create (int xerror)
Allocates and initializes an OpusDREDDecoder state.
int opus_dred_decoder_init (OpusDREDDecoder xdec)
Initializes an OpusDREDDecoder state.
void opus_dred_decoder_destroy (OpusDREDDecoder xdec)
Frees an OpusDREDDecoder allocated by opus_dred_decoder _create().
int opus_dred_decoder_ctl (OpusDREDDecoder xdred_dec, int request,...)
Perform a CTL function on an Opus DRED decoder.
int opus_dred_get_size (void)
Gets the size of an OpusDRED structure.
OpusDRED x opus_dred_alloc (int xerror)
Allocates and initializes a DRED state.
void opus_dred_free (OpusDRED xdec)
Frees an OpusDRED allocated by opus_dred_create().
int opus_dred_parse (OpusDREDDecoder *dred_dec, OpusDRED *dred, const unsigned char xdata, opus_int32
len, opus_int32 max_dred_samples, opus_int32 sampling_rate, int *dred_end, int defer_processing)
Decode an Opus DRED packet.
int opus_dred_process (OpusDREDDecoder *dred_dec, const OpusDRED xsrc, OpusDRED x*dst)
Finish decoding an Opus DRED packet.
int opus_decoder_dred_decode (OpusDecoder xst, const OpusDRED xdred, opus_int32 dred_offset, opus_int16
xpcm, opus_int32 frame_size)
Decode audio from an Opus DRED packet with 16-bit output.
int opus_decoder_dred_decode24 (OpusDecoder xst, const OpusDRED =xdred, opus_int32 dred_offset,
opus_int32 xpcm, opus_int32 frame_size)
Decode audio from an Opus DRED packet with 24-bit output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

100 File Documentation

« int opus_decoder_dred_decode_float (OpusDecoder xst, const OpusDRED =xdred, opus_int32 dred_offset, float
*pcm, opus_int32 frame_size)
Decode audio from an Opus DRED packet with floating point output.
* int opus_packet_parse (const unsigned char xdata, opus_int32 len, unsigned char xout_toc, const unsigned char
xframes[48], opus_int16 size[48], int xpayload_offset)
Parse an opus packet into one or more frames.
« int opus_packet_get_bandwidth (const unsigned char xdata)
Gets the bandwidth of an Opus packet.
« int opus_packet_get_samples_per_frame (const unsigned char xdata, opus_int32 Fs)
Gets the number of samples per frame from an Opus packet.
* int opus_packet_get_nb_channels (const unsigned char xdata)
Gets the number of channels from an Opus packet.
* int opus_packet_get_nb_frames (const unsigned char packet[], opus_int32 len)
Gets the number of frames in an Opus packet.
* int opus_packet_get_nb_samples (const unsigned char packet[], opus_int32 len, opus_int32 Fs)
Gets the number of samples of an Opus packet.
« int opus_packet_has_lbrr (const unsigned char packet[], opus_int32 len)
Checks whether an Opus packet has LBRR.
« int opus_decoder_get_nb_samples (const OpusDecoder xdec, const unsigned char packet[], opus_int32 len)
Gets the number of samples of an Opus packet.
« void opus_pcm_soft_clip (float xpcm, int frame_size, int channels, float *softclip_mem)
Applies soft-clipping to bring a float signal within the [-1,1] range.
* int opus_repacketizer_get_size (void)
Gets the size of an OpusRepacketizer structure.
» OpusRepacketizer * opus_repacketizer_init (OpusRepacketizer xrp)
(Re)initializes a previously allocated repacketizer state.
» OpusRepacketizer x opus_repacketizer_create (void)
Allocates memory and initializes the new repacketizer with opus_repacketizer _init().
« void opus_repacketizer_destroy (OpusRepacketizer *rp)
Frees an OpusRepacketizer allocated by opus_repacketizer_create().
« int opus_repacketizer_cat (OpusRepacketizer *rp, const unsigned char xdata, opus_int32 len)
Add a packet to the current repacketizer state.
» opus_int32 opus_repacketizer_out_range (OpusRepacketizer *rp, int begin, int end, unsigned char xdata,
opus_int32 maxlen)
Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().
* int opus_repacketizer_get_nb_frames (OpusRepacketizer xrp)
Return the total number of frames contained in packet data submitted to the repacketizer state so far via
opus_repacketizer_cat() since the last call to opus_repacketizer _init() or opus_repacketizer _create().
» opus_int32 opus_repacketizer_out (OpusRepacketizer xrp, unsigned char xdata, opus_int32 maxlen)
Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().
« int opus_packet_pad (unsigned char *data, opus_int32 len, opus_int32 new_len)
Pads a given Opus packet to a larger size (possibly changing the TOC sequence).
* opus_int32 opus_packet_unpad (unsigned char xdata, opus_int32 len)
Remove all padding from a given Opus packet and rewrite the TOC sequence to minimize space usage.
* int opus_multistream_packet_pad (unsigned char xdata, opus_int32 len, opus_int32 new_len, int nb_streams)
Pads a given Opus multi-stream packet to a larger size (possibly changing the TOC sequence).
» opus_int32 opus_multistream_packet_unpad (unsigned char xdata, opus_int32 len, int nb_streams)

Remove all padding from a given Opus multi-stream packet and rewrite the TOC sequence to minimize space usage.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.2 opus.h 101

5.1.1 Detailed Description

Opus reference implementation API.

5.2 opus.h

Go to the documentation of this file.
00001 /+ Copyright (c) 2010-2011 Xiph.Org Foundation, Skype Limited

00002 Written by Jean-Marc Valin and Koen Vos x/

00003 /=

00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions
00006 are met:

00007

00008 — Redistributions of source code must retain the above copyright

00009 notice, this list of conditions and the following disclaimer.

00010

00011 — Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in the
00013 documentation and/or other materials provided with the distribution.
00014

00015 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00016 "'AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00017 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00018 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
00019 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00020 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00021 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00022 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00023 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00024 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00025 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

00026 =/

00027

00033 #ifndef OPUS_H

00034 fdefine OPUS_H

00035

00036 #include "opus_types.h"
00037 #include "opus_defines.h"
00038

00039 #ifdef __cplusplus

00040 extern "C" {

00041 #endif

00042

00164 typedef struct OpusEncoder OpusEncoder;

00165

00174 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_encoder_get_size (int channels);
00175

00211 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusEncoder xopus_encoder_create (
00212 opus_int32 Fs,

00213 int channels,

00214 int application,

00215 int *error

00216);

00217

00231 OPUS_EXPORT int opus_encoder_init (

00232 OpusEncoder =*st,

00233 opus_int32 Fs,

00234 int channels,

00235 int application

00236) OPUS_ARG_NONNULL (1) ;

00237

00266 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_encode (
00267 OpusEncoder =st,

00268 const opus_intl6 *pcm,

00269 int frame_size,

00270 unsigned char =xdata,

00271 opus_int32 max_data_bytes

00272) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) OPUS_ARG_NONNULL (4) ;
00273

00302 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_encode24 (
00303 OpusEncoder =*st,

00304 const opus_int32 xpcm,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

102

File Documentation

00305
00306
00307
00308
00309
00343
00344
00345
00346
00347
00348
00349
00350
00354
00355
00367
00438
00439
00445
00446
00447
00453
00454
00460
00461
00477
00478
00479
00480
00481
00482
00494
00495
00496
00497
00498
00499
00516
00517
00518
00519
00520
00521
00522
00523
00524
00541
00542
00543
00544
00545
00546
00547
00548
00549
00566
00567
00568
00569
00570
00571
00572
00573
00574
00586
00587
00591
00592
00596
00597
00601
00602
00606
00607
00611
00612
00624
00625
00629
00630
00634

int frame_size,
unsigned char =xdata,
opus_int32 max_data_bytes
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_encode_float (
OpusEncoder =*st,
const float =pcm,
int frame_size,
unsigned char xdata,
opus_1int32 max_data_bytes
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT void opus_encoder_destroy (OpusEncoder xst);

OPUS_EXPORT int opus_encoder_ctl (OpusEncoder =*st, int request, ...) OPUS_ARG_NONNULL (1) ;
typedef struct OpusDecoder OpusDecoder;

typedef struct OpusDREDDecoder OpusDREDDecoder;

typedef struct OpusDRED OpusDRED;
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decoder_get_size (int channels);

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusDecoder =*opus_decoder_create (
opus_int32 Fs,
int channels,
int *error

)i

OPUS_EXPORT int opus_decoder_init (
OpusDecoder =*st,
opus_int32 Fs,
int channels

) OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decode (
OpusDecoder =st,
const unsigned char =xdata,
opus_int32 len,
opus_intl6 xpcm,
int frame_size,
int decode_fec
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decode24 (
OpusDecoder =st,
const unsigned char =xdata,
opus_int32 len,
opus_int32 xpcm,
int frame_size,
int decode_fec
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decode_float (
OpusDecoder =*st,
const unsigned char =xdata,
opus_int32 len,
float *pcm,
int frame_size,
int decode_fec
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;
OPUS_EXPORT int opus_decoder_ctl (OpusDecoder *st, int request, ...) OPUS_ARG_NONNULL (1) ;
OPUS_EXPORT void opus_decoder_destroy (OpusDecoder xst);
OPUS_EXPORT int opus_dred_decoder_get_size (void);
OPUS_EXPORT OpusDREDDecoder *opus_dred_decoder_create(int *error);
OPUS_EXPORT int opus_dred_decoder_init (OpusDREDDecoder =*dec);
OPUS_EXPORT void opus_dred_decoder_destroy (OpusDREDDecoder xdec) ;
OPUS_EXPORT int opus_dred_decoder_ctl (OpusDREDDecoder xdred_dec, int request, ...);

OPUS_EXPORT int opus_dred_get_size (void);

OPUS_EXPORT OpusDRED *opus_dred_alloc (int xerror);

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.2 opus.h 103

00635
00639
00640
00652

00653
00661
00662
00673

00674
00685

00686
00697

00698
00699
00713
00714
00715
00716
00717
00718
00719
00720
00721
00731

00732
00742

00743
00749

00750
00758

00759
00770

00771
00778

00779
00788

00789
00800
00801
00802
00948
00949
00953
00954
00972
00973
00977
00978
00983
00984
01032

01033
01034
01066

01067
01078

01079
01109

01110
01123
01124
01136
01137
01152

OPUS_EXPORT void opus_dred_free (OpusDRED =xdec);

OPUS_EXPORT int opus_dred_parse (OpusDREDDecoder xdred_dec, OpusDRED xdred, const unsigned char =data,
opus_int32 len, opus_int32 max_dred_samples, opus_int32 sampling_rate, int xdred_end, int
defer_processing) OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT int opus_dred_process (OpusDREDDecoder xdred_dec, const OpusDRED xsrc, OpusDRED xdst);

OPUS_EXPORT int opus_decoder_dred_decode (OpusDecoder *st, const OpusDRED *dred, opus_int32 dred_offset,
opus_intl6 xpcm, opus_int32 frame_size);

OPUS_EXPORT int opus_decoder_dred_decode24 (OpusDecoder xst, const OpusDRED *dred, opus_int32 dred_offset,
opus_int32 xpcm, opus_int32 frame_size);

OPUS_EXPORT int opus_decoder_dred_decode_float (OpusDecoder =*st, const OpusDRED xdred, opus_int32

dred_offset, float xpcm, opus_int32 frame_size);

OPUS_EXPORT int opus_packet_parse (
const unsigned char xdata,
opus_int32 len,
unsigned char *out_toc,
const unsigned char xframes[48],
opus_intl6 size[48],
int xpayload_offset
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (5) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_bandwidth (const unsigned char =xdata)
OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_samples_per_frame (const unsigned char =xdata,
opus_int32 Fs) OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_nb_channels (const unsigned char =xdata)
OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_nb_frames (const unsigned char packet[], opus_int32
len) OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_nb_samples (const unsigned char packet[],
opus_int32 len, opus_int32 Fs) OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_has_lbrr (const unsigned char packet([], opus_int32
len);

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decoder_get_nb_samples (const OpusDecoder =*dec, const unsigned
char packet[], opus_int32 len) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL(2) ;

OPUS_EXPORT void opus_pcm_soft_clip(float xpcm, int frame_size, int channels, float *softclip_mem) ;

typedef struct OpusRepacketizer OpusRepacketizer;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_repacketizer_get_size (void);

OPUS_EXPORT OpusRepacketizer xopus_repacketizer_init (OpusRepacketizer xrp) OPUS_ARG_NONNULL (1) ;
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusRepacketizer xopus_repacketizer_create(void);

OPUS_EXPORT void opus_repacketizer_destroy (OpusRepacketizer *rp);

OPUS_EXPORT int opus_repacketizer_ cat (OpusRepacketizer xrp, const unsigned char xdata, opus_int32 len)
OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_repacketizer_out_range (OpusRepacketizer *rp, int
begin, int end, unsigned char *data, opus_int32 maxlen) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_repacketizer_get_nb_frames (OpusRepacketizer xrp)
OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_repacketizer_out (OpusRepacketizer xrp, unsigned char
+*data, opus_int32 maxlen) OPUS_ARG_NONNULL (1) ;

OPUS_EXPORT int opus_packet_pad(unsigned char xdata, opus_int32 len, opus_int32 new_len);
OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_packet_unpad(unsigned char xdata, opus_int32 len);

OPUS_EXPORT int opus_multistream_packet_pad(unsigned char =*data, opus_int32 len, opus_int32 new_len, int
nb_streams) ;

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

104 File Documentation

01153
01167 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_packet_unpad(unsigned char =xdata,
opus_int32 len, int nb_streams);

01168

01171 #ifdef __ cplusplus
01172 }

01173 #endif

01174

01175 #endif /+ OPUS_H x/

5.3 opus_custom.h File Reference

Opus-Custom reference implementation API.

#include "opus_defines.h"
Include dependency graph for opus_custom.h:

opus_custom.h

opus_defines.h

opus_types.h

Macros

+ #define OPUS_CUSTOM_EXPORT
+ #define OPUS_CUSTOM_EXPORT_STATIC

Typedefs

« typedef struct OpusCustomEncoder OpusCustomEncoder

Contains the state of an encoder.
* typedef struct OpusCustomDecoder OpusCustomDecoder

State of the decoder.
« typedef struct OpusCustomMode OpusCustomMode

The mode contains all the information necessary to create an encoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.3 opus_custom.h File Reference 105

Functions

5.3.1

Opus-

OpusCustomMode * opus_custom_mode_create (opus_int32 Fs, int frame_size, int xerror)
Creates a new mode struct.
void opus_custom_mode_destroy (OpusCustomMode xmode)
Destroys a mode struct.
int opus_custom_encoder_get_size (const OpusCustomMode xmode, int channels)
Gets the size of an OpusCustomEncoder structure.
OpusCustomEncoder * opus_custom_encoder_create (const OpusCustomMode *mode, int channels, int xerror)
Creates a new encoder state.
void opus_custom_encoder_destroy (OpusCustomEncoder xst)
Destroys an encoder state.
int opus_custom_encode_float (OpusCustomEncoder xst, const float xpcm, int frame_size, unsigned char
xcompressed, int maxCompressedBytes)
Encodes a frame of audio.
int opus_custom_encode (OpusCustomEncoder *st, const opus_int16 xpcm, int frame_size, unsigned char
xcompressed, int maxCompressedBytes)
Encodes a frame of audio.
int opus_custom_encode24 (OpusCustomEncoder xst, const opus_int32 xpcm, int frame_size, unsigned char
xcompressed, int maxCompressedBytes)
Encodes a frame of audio.
int opus_custom_encoder_ctl (OpusCustomEncoder *OPUS_RESTRICT st, int request,...)
Perform a CTL function on an Opus custom encoder.
int opus_custom_decoder_get_size (const OpusCustomMode xmode, int channels)
Gets the size of an OpusCustomDecoder structure.
int opus_custom_decoder_init (OpusCustomDecoder *st, const OpusCustomMode xmode, int channels)
Initializes a previously allocated decoder state The memory pointed to by st must be the size returned by opus_custom«
_decoder_get size.
OpusCustomDecoder * opus_custom_decoder_create (const OpusCustomMode xmode, int channels, int xerror)
Creates a new decoder state.
void opus_custom_decoder_destroy (OpusCustomDecoder xst)
Destroys a decoder state.
int opus_custom_decode_float (OpusCustomDecoder xst, const unsigned char xdata, int len, float *pcm, int
frame_size)
Decode an opus custom frame with floating point output.
int opus_custom_decode (OpusCustomDecoder xst, const unsigned char xdata, int len, opus_int16 xpcm, int
frame_size)
Decode an opus custom frame.
int opus_custom_decode24 (OpusCustomDecoder *st, const unsigned char xdata, int len, opus_int32 xpcm, int
frame_size)
Decode an opus custom frame.
int opus_custom_decoder_ctl (OpusCustomDecoder *OPUS_RESTRICT st, int request,...)

Perform a CTL function on an Opus custom decoder.

Detailed Description

Custom reference implementation API.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

106

File Documentation

5.3.2 Macro Definition Documentation

5.3.2.1 OPUS_CUSTOM_EXPORT

#define OPUS_CUSTOM_EXPORT

5.3.2.2 OPUS_CUSTOM_EXPORT_STATIC

#define OPUS_CUSTOM_EXPORT_STATIC

5.4

opus_custom.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00029
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00095
00096
00102
00103

/* Copyright (c) 2007-2008 CSIRO
Copyright (c) 2007-2009 Xiph.Org Foundation
Copyright (c) 2008-2012 Gregory Maxwell
Written by Jean-Marc Valin and Gregory Maxwell x/

/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

— Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
""AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#ifndef OPUS_CUSTOM_H
#define OPUS_CUSTOM_H

#include "opus_defines.h"

#ifdef _ cplusplus
extern "C" {
#endif

#if defined (CUSTOM_MODES) || defined(ENABLE_OPUS_CUSTOM_API)
define OPUS_CUSTOM_EXPORT OPUS_EXPORT

define OPUS_CUSTOM_EXPORT_STATIC OPUS_EXPORT

#else

define OPUS_CUSTOM_EXPORT

ifdef OPUS_BUILD

define OPUS_CUSTOM_EXPORT_STATIC static OPUS_INLINE
else

define OPUS_CUSTOM_EXPORT_STATIC

endif

#endif

typedef struct OpusCustomEncoder OpusCustomEncoder;

typedef struct OpusCustomDecoder OpusCustomDecoder;

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.4 opus_custom.h 107

00111 typedef struct OpusCustomMode OpusCustomMode;

00112

00122 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomMode xopus_custom_mode_create (opus_int32 Fs, int
frame_size, int *error);

00123

00128 OPUS_CUSTOM_EXPORT void opus_custom_mode_destroy (OpusCustomMode =xmode) ;

00129

00130

00131 #if !defined(OPUS_BUILD) || defined(CELT_ENCODER_C)

00132

00133 /% Encoder =/

00139 OPUS_CUSTOM_EXPORT_STATIC OPUS_WARN_UNUSED_RESULT int opus_custom_encoder_get_size (

00140 const OpusCustomMode xmode,

00141 int channels

00142) OPUS_ARG_NONNULL (1) ;

00143

00144 #if defined (CUSTOM_MODES) || defined (ENABLE_OPUS_CUSTOM_APT)
00157 OPUS_CUSTOM_EXPORT int opus_custom_encoder_init (

00158 OpusCustomEncoder =xst,

00159 const OpusCustomMode =xmode,

00160 int channels

00161) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) ;
00162 # endif
00163 #endif

00164

00165

00175 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomEncoder *opus_custom_encoder_create (
00176 const OpusCustomMode xmode,

00177 int channels,

00178 int xerror

00179) OPUS_ARG_NONNULL (1) ;

00180

00181

00185 OPUS_CUSTOM_EXPORT void opus_custom_encoder_destroy (OpusCustomEncoder =*st);
00186

00204 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_encode_float (
00205 OpusCustomEncoder =xst,

00206 const float #pcm,

00207 int frame_size,

00208 unsigned char xcompressed,

00209 int maxCompressedBytes

00210) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) OPUS_ARG_NONNULL (4) ;

00211

00225 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_encode (
00226 OpusCustomEncoder =st,

00227 const opus_intl6 *pcm,

00228 int frame_size,

00229 unsigned char xcompressed,

00230 int maxCompressedBytes

00231) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) OPUS_ARG_NONNULL (4) ;

00232

00246 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_encode24 (
00247 OpusCustomEncoder =xst,

00248 const opus_int32 xpcm,

00249 int frame_size,

00250 unsigned char xcompressed,

00251 int maxCompressedBytes

00252) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) OPUS_ARG_NONNULL (4) ;

00253

00260 OPUS_CUSTOM_EXPORT int opus_custom_encoder_ctl (OpusCustomEncoder x OPUS_RESTRICT st, int request, ...)
OPUS_ARG_NONNULL (1) ;

00261

00262

00263 #if !defined(OPUS_BUILD) || defined(CELT_DECODER_C)
00264 /% Decoder =/

00265

00271 OPUS_CUSTOM_EXPORT_STATIC OPUS_WARN_UNUSED_RESULT int opus_custom_decoder_get_size (
00272 const OpusCustomMode =xmode,

00273 int channels

00274) OPUS_ARG_NONNULL (1) ;

00275

00288 OPUS_CUSTOM_EXPORT_STATIC int opus_custom_decoder_init (
00289 OpusCustomDecoder =xst,

00290 const OpusCustomMode xmode,

00291 int channels

00292) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2) ;

00293

00294 #endif

00295

00296

00305 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomDecoder =*opus_custom_decoder_create (

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

108

File Documentation

00306
00307
00308
00309
00310
00314
00315
00325
00326
00327
00328
00329
00330
00331
00332
00342
00343
00344
00345
00346
00347
00348
00349
00359
00360
00361
00362
00363
00364
00365
00366
00373

00374
00377
00378
00379
00380
00381

5.5

const OpusCustomMode »*mode,
int channels,
int xerror

) OPUS_ARG_NONNULL (1) ;

OPUS_CUSTOM_EXPORT void opus_custom_decoder_destroy (OpusCustomDecoder =xst);

OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_decode_float (
OpusCustomDecoder =*st,
const unsigned char =xdata,
int len,
float *pcm,
int frame_size
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;

OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_decode (
OpusCustomDecoder =xst,
const unsigned char =data,
int len,
opus_int1l6 xpcm,
int frame_size
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;

OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_decode24 (
OpusCustomDecoder =xst,
const unsigned char =xdata,
int len,
opus_int32 xpcm,
int frame_size
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;

OPUS_CUSTOM_EXPORT int opus_custom_decoder_ctl (OpusCustomDecoder * OPUS_RESTRICT st, int request, ...)
OPUS_ARG_NONNULL (1) ;

#ifdef ___cplusplus
}
#endif

#endif /x OPUS_CUSTOM_H */

opus_defines.h File Reference

Opus reference implementation constants.

#include "opus_types.h"
Include dependency graph for opus_defines.h:

4
opus_types.h

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.5 opus_defines.h File Reference

109

This graph shows which files directly or indirectly include this file:

opus_defines.h

opus.h

opus_custom.h

opus_multistream.h

Macros

* #define OPUS_OK
No error.
 #define OPUS_BAD_ARG
One or more invalid/out of range arguments.
 #define OPUS_BUFFER_TOO_SMALL
Not enough bytes allocated in the buffer.
« #define OPUS_INTERNAL_ERROR
An internal error was detected.
« #define OPUS_INVALID_PACKET
The compressed data passed is corrupted.
* #define OPUS_UNIMPLEMENTED
Invalid/unsupported request number.
« #define OPUS_INVALID_STATE
An encoder or decoder structure is invalid or already freed.
+ #define OPUS_ALLOC_FAIL
Memory allocation has failed.
* #define OPUS_AUTO
Auto/default setting.
+ #define OPUS_BITRATE_MAX

Maximum bitrate.
 #define OPUS_APPLICATION_VOIP

Best for most VolP/videoconference applications where listening quality and intelligibility matter most.

« #define OPUS_APPLICATION_AUDIO

Best for broadcast/high-fidelity application where the decoded audio should be as close as possible to the input.

+ #define OPUS_APPLICATION_RESTRICTED_LOWDELAY

Only use when lowest-achievable latency is what matters most.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

110

File Documentation

#define OPUS_APPLICATION_RESTRICTED_SILK 2052

Experts only: forces SILK encoding; don't allocate CELT state at all.
#define OPUS_APPLICATION_RESTRICTED_CELT 2053

Experts only: forces CELT encoding; don't allocate SILK state at all.

#define OPUS_SIGNAL_VOICE 3001

Signal being encoded is voice.
#define OPUS_SIGNAL_MUSIC 3002

Signal being encoded is music.

#define OPUS_BANDWIDTH_NARROWBAND
4 kHz bandpass

#define OPUS_BANDWIDTH_MEDIUMBAND
6 kHz bandpass

#define OPUS_BANDWIDTH_WIDEBAND
8 kHz bandpass

#define OPUS_BANDWIDTH_SUPERWIDEBAND
12 kHz bandpass

#define OPUS_BANDWIDTH_FULLBAND
20 kHz bandpass

#define OPUS_FRAMESIZE_ ARG 5000

Select frame size from the argument (default)
#define OPUS_FRAMESIZE_2_5 MS 5001

Use 2.5 ms frames.
#define OPUS_FRAMESIZE 5 MS 5002

Use 5 ms frames.
#define OPUS_FRAMESIZE 10_MS 5003

Use 10 ms frames.
#define OPUS_FRAMESIZE 20 MS 5004

Use 20 ms frames.
#define OPUS_FRAMESIZE 40 _MS 5005

Use 40 ms frames.
#define OPUS_FRAMESIZE 60 _MS 5006

Use 60 ms frames.
#define OPUS_FRAMESIZE 80 MS 5007

Use 80 ms frames.
#define OPUS_FRAMESIZE_100_MS 5008

Use 100 ms frames.
#define OPUS_FRAMESIZE 120 _MS 5009

Use 120 ms frames.
#define OPUS_SET_COMPLEXITY(x)

Configures the encoder's computational complexity.
#define OPUS_GET_COMPLEXITY(x)

Gets the encoder's complexity configuration.
#define OPUS_SET_BITRATE(x)

Configures the bitrate in the encoder.
#define OPUS_GET_BITRATE(x)

Gets the encoder’s bitrate configuration.
#define OPUS_SET_VBR(x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.5 opus_defines.h File Reference

111

Enables or disables variable bitrate (VBR) in the encoder.
 #define OPUS_GET_VBR(x)

Determine if variable bitrate (VBR) is enabled in the encoder.
« #define OPUS_SET_VBR_CONSTRAINT(x)

Enables or disables constrained VBR in the encoder.
* #define OPUS_GET_VBR_CONSTRAINT(x)

Determine if constrained VBR is enabled in the encoder.
+ #define OPUS_SET_FORCE_CHANNELS(x)
Configures mono/stereo forcing in the encoder.
+ #define OPUS_GET_FORCE_CHANNELS(x)

Gets the encoder's forced channel configuration.
+ #define OPUS_SET_MAX_BANDWIDTH(x)

Configures the maximum bandpass that the encoder will select automatically.

+ #define OPUS_GET_MAX_BANDWIDTH(x)

Gets the encoder's configured maximum allowed bandpass.
+ #define OPUS_SET_BANDWIDTH(x)

Sets the encoder's bandpass to a specific value.
* #define OPUS_SET_SIGNAL(x)

Configures the type of signal being encoded.
+ #define OPUS_GET_SIGNAL(x)

Gets the encoder's configured signal type.
« #define OPUS_SET_APPLICATION(x)

Configures the encoder's intended application.
* #define OPUS_GET_APPLICATION(x)

Gets the encoder's configured application.
* #define OPUS_GET_LOOKAHEAD(x)

Gets the total samples of delay added by the entire codec.
 #define OPUS_SET_INBAND_FEC(x)

Configures the encoder's use of inband forward error correction (FEC).
« #define OPUS_GET_INBAND_FEC(x)

Gets encoder's configured use of inband forward error correction.
* #define OPUS_SET_PACKET_LOSS_PERC(x)

Configures the encoder's expected packet loss percentage.
« #define OPUS_GET_PACKET_LOSS_PERC(x)

Gets the encoder's configured packet loss percentage.
« #define OPUS_SET_DTX(x)

Configures the encoder's use of discontinuous transmission (DTX).
* #define OPUS_GET_DTX(x)

Gets encoder's configured use of discontinuous transmission.
 #define OPUS_SET_LSB_DEPTH(x)

Configures the depth of signal being encoded.
* #define OPUS_GET_LSB_DEPTH(x)

Gets the encoder's configured signal depth.
 #define OPUS_SET_EXPERT_FRAME_DURATION(x)

Configures the encoder's use of variable duration frames.
« #define OPUS_GET_EXPERT_FRAME_DURATION(x)

Gets the encoder's configured use of variable duration frames.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

File Documentation

#define OPUS_SET_PREDICTION_DISABLED(x)

If set to 1, disables almost all use of prediction, making frames almost completely independent.
#define OPUS_GET_PREDICTION_DISABLED(x)

Gets the encoder's configured prediction status.
#define OPUS_SET_DRED_DURATION(x)

If non-zero, enables Deep Redundancy (DRED) and use the specified maximum number of 10-ms redundant frames.
#define OPUS_GET_DRED_DURATION(x)

Gets the encoder's configured Deep Redundancy (DRED) maximum number of frames.
#define OPUS_SET_DNN_BLOB(data, len)

Provide external DNN weights from binary object (only when explicitly built without the weights)
#define OPUS_SET_QEXT(x)

If set to 1, enables quality extension (QEXT), otherwise disables it (default).
#define OPUS_GET_QEXT(x)

Gets the encoder's configured quality extension (QEXT).
#define OPUS_RESET_STATE

Resets the codec state to be equivalent to a freshly initialized state.

#define OPUS_GET_FINAL_RANGE(x)

Gets the final state of the codec's entropy coder.
#define OPUS_GET_BANDWIDTH(x)

Gets the encoder's configured bandpass or the decoder’s last bandpass.
#define OPUS_GET_SAMPLE_RATE(x)

Gets the sampling rate the encoder or decoder was initialized with.
#define OPUS_SET_PHASE_INVERSION_DISABLED(x)

If set to 1, disables the use of phase inversion for intensity stereo, improving the quality of mono downmixes, but slightly
reducing normal stereo quality.

#define OPUS_GET_PHASE_INVERSION_DISABLED(x)

Gets the encoder's configured phase inversion status.
#define OPUS_GET_IN_DTX(x)

Gets the DTX state of the encoder.
#define OPUS_SET_GAIN(x)

Configures decoder gain adjustment.
#define OPUS_GET_GAIN(x)

Gets the decoder's configured gain adjustment.
#define OPUS_GET_LAST_PACKET_DURATION(x)

Gets the duration (in samples) of the last packet successfully decoded or concealed.
#define OPUS_GET_PITCH(x)

Gets the pitch of the last decoded frame, if available.
#define OPUS_SET_OSCE_BWE(x)

Enables blind bandwidth extension for wideband signals if decoding sampling rate is 48 kHz.
#define OPUS_GET_OSCE_BWE(x)

Gets blind bandwidth extension flag for wideband signals if decoding sampling rate is 48 kHz.
#define OPUS_SET_IGNORE_EXTENSIONS(x)

If set to 1, the decoder will ignore all extensions found in the padding area (does not affect DRED, which is decoded
separately).
#define OPUS_GET_IGNORE_EXTENSIONS(x)

Gets whether the decoder is ignoring extensions.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.6 opus_defines.h

113

Functions

+ const char * opus_strerror (int error)

Converts an opus error code into a human readable string.

 const char * opus_get_version_string (void)

5.5.1

Gets the libopus version string.

Detailed Description

Opus reference implementation constants.

5.6 opus_defines.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00033
00034
00035
00036
00037
00038
00039
00040
00041
00046
00048
00050
00052
00054
00056
00058
00060
00066
00067
00068
00069
00070
00071
00072
00073
00074

/* Copyright (c) 2010-2011 Xiph.Org Foundation, Skype Limited
Written by Jean-Marc Valin and Koen Vos x/

/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:
— Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
- Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"'AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#ifndef OPUS_DEFINES_H

#define OPUS_DEFINES_H

#include "opus_types.h"

#ifdef _ cplusplus

extern "C" {

#endif

#define OPUS_OK 0

#define OPUS_BAD_ARG -1

#define OPUS_BUFFER_TOO_SMALL -2

#define OPUS_INTERNAL_ERROR -3

#define OPUS_INVALID_PACKET -4

#define OPUS_UNIMPLEMENTED -5

#define OPUS_INVALID_STATE -6

#define OPUS_ALLOC_FAIL -7

#ifndef OPUS_EXPORT

if defined (_WIN32)

if defined (OPUS_BUILD) && defined (DLL_EXPORT)

define OPUS_EXPORT __declspec (dllexport)

else

define OPUS_EXPORT

endif

elif defined(___GNUC__) && defined (OPUS_BUILD)

define OPUS_EXPORT __ attribute_ ((visibility ("default")))

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

114 File Documentation

00075 # else

00076 # define OPUS_EXPORT

00077 # endif

00078 #endif

00079

00080 # if !defined(OPUS_GNUC_PREREQ)

00081 # if defined(__GNUC__)&&defined(___GNUC_MINOR__)
00082 # define OPUS_GNUC_PREREQ (_maj,_min) \

00083 ((__GNUC__«16)+__GNUC_MINOR__>=((_maj)«l6)+ (_min)

00084 # else

00085 +# define OPUS_GNUC_PREREQ (_maj,_min) O

00086 # endif

00087 # endif

00088

00089 #if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L))

00090 # if OPUS_GNUC_PREREQ(3,0)
00091 # define OPUS_RESTRICT _ restrict_
00092 # elif (defined(_MSC_VER) && _MSC_VER >= 1400)

00093 # define OPUS_RESTRICT __restrict
00094 # else
00095 # define OPUS_RESTRICT

00096 # endif

00097 #else

00098 # define OPUS_RESTRICT restrict
00099 #endif

00100

00101 #if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L))
00102 # if OPUS_GNUC_PREREQ (2, 7)

00103 # define OPUS_INLINE __inline___
00104 # elif (defined(_MSC_VER))

00105 # define OPUS_INLINE __inline
00106 # else

00107 # define OPUS_INLINE

00108 # endif

00109 #else

00110 # define OPUS_INLINE inline
00111 #endif

00112
00116 #if defined(__ GNUC__) && OPUS_GNUC_PREREQ (3, 4)
00117 # define OPUS_WARN_UNUSED_RESULT __ attribute_ ((__warn_unused_result__))

00118 #else

00119 # define OPUS_WARN_UNUSED_RESULT

00120 #endif

00121 #if !defined(OPUS_BUILD) && defined(__ _GNUC__) && OPUS_GNUC_PREREQ (3, 4)
00122 # define OPUS_ARG_NONNULL (_x) __attribute__ ((__nonnull__ (_x)))

00123 #else

00124 # define OPUS_ARG_NONNULL (_x)

00125 #endif

00126

00130 f#define OPUS_SET_APPLICATION_REQUEST 4000
00131 #define OPUS_GET_APPLICATION_REQUEST 4001
00132 #define OPUS_SET_BITRATE_REQUEST 4002
00133 #define OPUS_GET_BITRATE_REQUEST 4003
00134 #define OPUS_SET_MAX_BANDWIDTH_REQUEST 4004
00135 #define OPUS_GET_MAX_BANDWIDTH_REQUEST 4005
00136 #define OPUS_SET_VBR_REQUEST 4006
00137 #define OPUS_GET_VBR_REQUEST 4007
00138 #define OPUS_SET_BANDWIDTH_REQUEST 4008
00139 #define OPUS_GET_BANDWIDTH_REQUEST 4009
00140 #define OPUS_SET_COMPLEXITY_REQUEST 4010
00141 #define OPUS_GET_COMPLEXITY_REQUEST 4011
00142 #define OPUS_SET_INBAND_FEC_REQUEST 4012
00143 #define OPUS_GET_INBAND_FEC_REQUEST 4013
00144 #define OPUS_SET_PACKET_LOSS_PERC_REQUEST 4014
00145 #define OPUS_GET_PACKET_LOSS_PERC_REQUEST 4015
00146 #define OPUS_SET_DTX_REQUEST 4016
00147 #define OPUS_GET_DTX_REQUEST 4017
00148 #define OPUS_SET_VBR_CONSTRAINT_REQUEST 4020
00149 #define OPUS_GET_VBR_CONSTRAINT_REQUEST 4021
00150 #define OPUS_SET_FORCE_CHANNELS_REQUEST 4022
00151 #define OPUS_GET_FORCE_CHANNELS_REQUEST 4023
00152 #define OPUS_SET_SIGNAL_REQUEST 4024
00153 #define OPUS_GET_SIGNAL_REQUEST 4025
00154 f#define OPUS_GET_LOOKAHEAD_ REQUEST 4027
00155 /% #define OPUS_RESET_STATE 4028 «/

00156 #define OPUS_GET_SAMPLE_RATE_REQUEST 4029
00157 #define OPUS_GET_FINAL_RANGE_REQUEST 4031
00158 #define OPUS_GET_PITCH_REQUEST 4033
00159 #define OPUS_SET_GAIN_REQUEST 4034
00160 #define OPUS_GET_GAIN_REQUEST 4045 /x Should have been 4035 x/
00161 #define OPUS_SET_LSB_DEPTH_REQUEST 4036

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.6 opus_defines.h

00162 #define OPUS_GET_LSB_DEPTH_REQUEST 4037
00163 #define OPUS_GET_LAST_PACKET_DURATION_REQUEST 4039
00164 #define OPUS_SET_EXPERT_FRAME_DURATION_REQUEST 4040
00165 #define OPUS_GET_EXPERT_FRAME_DURATION_REQUEST 4041
00166 #define OPUS_SET_PREDICTION_DISABLED_REQUEST 4042
00167 #define OPUS_GET_PREDICTION_DISABLED_REQUEST 4043
00168 /% Don’t use 4045, it’s already taken by OPUS_GET_GAIN_REQUEST x/
00169 #define OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST 4046
00170 #define OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST 4047
00171 #define OPUS_GET_IN_DTX_REQUEST 4049
00172 #define OPUS_SET_DRED_DURATION_REQUEST 4050

00173 #define OPUS_GET_DRED_DURATION_REQUEST 4051

00174 #define OPUS_SET_DNN_BLOB_REQUEST 4052

00175 /+#define OPUS_GET_DNN_BLOB_REQUEST 4053 «*/

00176 #define OPUS_SET_OSCE_BWE_REQUEST 4054

00177 #define OPUS_GET_OSCE_BWE_REQUEST 4055

00178 #define OPUS_SET_QEXT_REQUEST 4056

00179 #define OPUS_GET_QEXT_REQUEST 4057

00180 #define OPUS_SET_IGNORE_EXTENSIONS_REQUEST 4058

00181 #define OPUS_GET_IGNORE_EXTENSIONS_REQUEST 4059

00182

00184 #define OPUS_HAVE_OPUS_PROJECTION_H

00185

00186 /+ Macros to trigger compilation errors when the wrong types are provided to a CTL */
00187 #define opus_check_int (x) (((void) ((x) == (opus_int32)0)), (opus_int32) (x)

00188

00189 #ifdef DISABLE_PTR_CHECK

00190 /+ Disable checks to prevent ubsan from complaining about NULL checks
00191 in test_opus_api. */

00192 #define opus_check_int_ptr(ptr) (ptr)

00193 #define opus_check_uint_ptr (ptr) (ptr)

00194 #define opus_check_uint8_ptr (ptr) (ptr)

00195 #define opus_check_vall6_ptr (ptr) (ptr)

00196 #define opus_check_void_ptr(ptr) (ptr)

00197 #else

00198 #define opus_check_int_ptr(ptr) ((ptr) + ((ptr) - (opus_int32«) (ptr))
00199 #define opus_check_uint_ptr(ptr) ((ptr) + ((ptr) - (opus_uint32«) (ptr))
00200 #define opus_check_uint8_ptr(ptr) ((ptr) + ((ptr) - (opus_uint8«) (ptr))
00201 #define opus_check_vallé6_ptr(ptr) ((ptr) + ((ptr) - (opus_vallé6x) (ptr))
00202 #define opus_check_void_ptr(x) ((void) ((void %)0 == (x)), (x))

00203 #endif
00210 /% Values for the various encoder CTLs x/

00211 #define OPUS_AUTO -1000
00212 #define OPUS_BITRATE_MAX -1
00216 #define OPUS_APPLICATION_VOIP 2048
00219 #define OPUS_APPLICATION_AUDIO 2049
00222 #define OPUS_APPLICATION_RESTRICTED_LOWDELAY 2051
00224 #define OPUS_APPLICATION_RESTRICTED_SILK 2052
00226 #define OPUS_APPLICATION_RESTRICTED_CELT 2053
00227

00228 #define OPUS_SIGNAL_VOICE 3001
00229 #define OPUS_SIGNAL_MUSIC 3002
00230 #define OPUS_BANDWIDTH_NARROWBAND 1101
00231 #define OPUS_BANDWIDTH_MEDIUMBAND 1102
00232 #define OPUS_BANDWIDTH_WIDEBAND 1103
00233 #define OPUS_BANDWIDTH_SUPERWIDEBAND 1104
00234 #define OPUS_BANDWIDTH_FULLBAND 1105
00236 #define OPUS_FRAMESIZE_ARG 5000
00237 #define OPUS_FRAMESIZE_2_5_MS 5001
00238 f#define OPUS_FRAMESIZE_5_MS 5002
00239 #define OPUS_FRAMESIZE_10_MS 5003
00240 #define OPUS_FRAMESIZE_20_MS 5004
00241 #define OPUS_FRAMESIZE_40_MS 5005
00242 #define OPUS_FRAMESIZE_60_MS 5006
00243 f#define OPUS_FRAMESIZE_80_MS 5007
00244 #define OPUS_FRAMESIZE_100_MS 5008
00245 #define OPUS_FRAMESIZE_120_MS 5009

00280 #define OPUS_SET_COMPLEXITY (x) OPUS_SET_COMPLEXITY REQUEST, opus_check_int (x)

00286 #define OPUS_GET_COMPLEXITY (x) OPUS_GET_COMPLEXITY_REQUEST, opus_check_int_ptr (x)

00287

00299 #define OPUS_SET_BITRATE (x) OPUS_SET_BITRATE_REQUEST, opus_check_int (x)

00307 #define OPUS_GET_BITRATE (x) OPUS_GET_BITRATE_REQUEST, opus_check_int_ptr (x)

00308

00322 fdefine OPUS_SET_VBR(x) OPUS_SET_VBR_REQUEST, opus_check_int (x)

00333 #define OPUS_GET_VBR(x) OPUS_GET_VBR_REQUEST, opus_check_int_ptr (x)

00334

00351 #define OPUS_SET_VBR_CONSTRAINT (x) OPUS_SET_VBR_CONSTRAINT_REQUEST, opus_check_int (x)
00361 #define OPUS_GET_VBR_CONSTRAINT (x) OPUS_GET_VBR_CONSTRAINT_REQUEST, opus_check_int_ptr (x)
00362

00376 #define OPUS_SET_FORCE_CHANNELS (x) OPUS_SET_FORCE_CHANNELS_REQUEST, opus_check_int (x)
00386 #define OPUS_GET_FORCE_CHANNELS (x) OPUS_GET_FORCE_CHANNELS_REQUEST, opus_check_int_ptr (x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

116

File Documentation

00387
00404
00405
00417
00418
00436
00437
00448
00458
00459
00460
00475
00489
00490
00504
00505
00516
00526
00527
00535
00541
00542
00552
00561
00580
00586
00587
00611
00628
00629
00639
00648
00649
00652
00655
00656
00659

00660
00664
00667
00668
00710
00711
00720
00721
00734
00735
00742
00743
00757
00766

00776
00777
00795
00800
00801
00805
00806
00817
00818
00824
00829
00830
00834
00837
00838
00850
00851
00860
00863
00864
00865
00866
00867

#define OPUS_SET_MAX_BANDWIDTH (x)

#define OPUS_GET_MAX_BANDWIDTH (x)

#define OPUS_SET_BANDWIDTH (x) OPUS_SET_BANDWIDTH_REQUEST,
#define

#define

OPUS_SET_SIGNAL (x)
OPUS_GET_SIGNAL (x)

OPUS_SET_SIGNAL_REQUEST,
OPUS_GET_SIGNAL_REQUEST,

#define
#define

OPUS_SET_APPLICATION (x)
OPUS_GET_APPLICATION (x)

OPUS_SET_APPLICATION_REQUEST,
OPUS_GET_APPLICATION_REQUEST,
#define OPUS_GET_LOOKAHEAD (x) OPUS_GET_LOOKAHEAD_REQUEST,
#define
#define

OPUS_SET_INBAND_FEC (x)
OPUS_GET_INBAND_FEC (x)

OPUS_SET_INBAND_FEC_REQUEST,
OPUS_GET_INBAND_FEC_REQUEST,

#define
#define

OPUS_SET_PACKET_LOSS_PERC (x)
OPUS_GET_PACKET_LOSS_PERC (x)

#define
#define
#define
#define

OPUS_SET_DTX (x) OPUS_SET_DTX_REQUEST,
OPUS_GET_DTX (x) OPUS_GET_DTX_REQUEST,
OPUS_SET_LSB_DEPTH (x) OPUS_SET_LSB_DEPTH_REQUEST,
OPUS_GET_LSB_DEPTH (x) OPUS_GET_LSB_DEPTH_REQUEST,

#define
#define

OPUS_SET_EXPERT_FRAME_DURATION (x)
OPUS_GET_EXPERT_FRAME_DURATION (x)

#define
#define

OPUS_SET_PREDICTION_DISABLED (x)
OPUS_GET_PREDICTION_DISABLED (x)

#define
#define

OPUS_SET_DRED_DURATION (x)
OPUS_GET_DRED_DURATION (x)

#define OPUS_SET_DNN_BLOB (data,
opus_check_int (len)

len)

#define OPUS_SET_QEXT (x)
#define OPUS_GET_QEXT (x)

OPUS_SET_QEXT_REQUEST,
OPUS_GET_QEXT_REQUEST,

#define OPUS_RESET_STATE 4028

#define OPUS_GET_FINAL_RANGE (x) OPUS_GET_FINAL_RANGE_REQUEST,

#define OPUS_GET_BANDWIDTH (x) OPUS_GET_BANDWIDTH_REQUEST,

#define OPUS_GET_SAMPLE_RATE (x) OPUS_GET_SAMPLE_RATE_REQUEST,
#define OPUS_SET_PHASE_INVERSION_DISABLED (x)
#define OPUS_GET_PHASE_INVERSION_DISABLED (x)
opus_check_int_ptr (x)

#define OPUS_GET_IN_DTX (x) OPUS_GET_IN_DTX_REQUEST,
#define OPUS_SET_GAIN (x)
#define OPUS_GET_GAIN (x)

OPUS_SET_GAIN_REQUEST,
OPUS_GET_GAIN_REQUEST,

#define OPUS_GET_LAST_PACKET_DURATION (x)
#define OPUS_GET_PITCH(x) OPUS_GET_PITCH_REQUEST,

#define OPUS_SET_OSCE_BWE (x)
#define OPUS_GET_OSCE_BWE (x)

OPUS_SET_OSCE_BWE_REQUEST,
OPUS_GET_OSCE_BWE_REQUEST,

#define OPUS_SET_IGNORE_EXTENSIONS (x)
#define OPUS_GET_IGNORE_EXTENSIONS (x)

OPUS_EXPORT const char *opus_strerror (int error);
OPUS_EXPORT const char *opus_get_version_string(void);
#ifdef __ _cplusplus

}

#endif

#endif /+ OPUS_DEFINES_H =/

OPUS_SET_MAX_BANDWIDTH_REQUEST,

OPUS_GET_MAX_BANDWIDTH_REQUEST,

OPUS_SET_PACKET_LOSS_PERC_REQUEST,
OPUS_GET_PACKET_LOSS_PERC_REQUEST,

OPUS_SET_EXPERT_FRAME_DURATION_REQUEST,
OPUS_GET_EXPERT_FRAME_DURATION_REQUEST,

OPUS_SET_PREDICTION_DISABLED_REQUEST,
OPUS_GET_PREDICTION_DISABLED_REQUEST,

OPUS_SET_DRED_DURATION_REQUEST,
OPUS_GET_DRED_DURATION_REQUEST,

OPUS_SET_DNN_BLOB_REQUEST,

OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST,
OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST,

OPUS_GET_LAST_PACKET_DURATION_REQUEST,

OPUS_SET_IGNORE_EXTENSIONS_REQUEST,
OPUS_GET_IGNORE_EXTENSIONS_REQUEST,

opus_check_int (x)

opus_check_int_ptr (x)

opus_check_int (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)
opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_void_ptr(data),

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_uint_ptr (x)

opus_check_int_ptr (x)

opus_check_int_ptr (x)

opus_check_int (x)

opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int_ptr (x)

opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

opus_check_int (x)
opus_check_int_ptr (x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.7 opus_multistream.h File Reference

117

5.7 opus_multistream.h File Reference

Opus reference implementation multistream API.

#include "opus.h"
Include dependency graph for opus_multistream.h:

opus_multistream.h

opus.h

opus_defines.h

opus_types.h

Macros

* #define OPUS_MULTISTREAM_GET_ENCODER_STATE(x, y)

Gets the encoder state for an individual stream of a multistream encoder.

+ #define OPUS_MULTISTREAM_GET_DECODER_STATE(x, y)

Gets the decoder state for an individual stream of a multistream decoder.

Typedefs

« typedef struct OpusMSEncoder OpusMSEncoder

Opus multistream encoder state.
+ typedef struct OpusMSDecoder OpusMSDecoder

Opus multistream decoder state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

118

File Documentation

Functions

Multistream encoder functions

opus_int32 opus_multistream_encoder_get_size (int streams, int coupled_streams)

Gets the size of an OpusMSEncoder structure.
opus_int32 opus_multistream_surround_encoder_get_size (int channels, int mapping_family)
OpusMSEncoder * opus_multistream_encoder_create (opus_int32 Fs, int channels, int streams, int coupled«
_streams, const unsigned char xmapping, int application, int xerror)

Allocates and initializes a multistream encoder state.
OpusMSEncoder * opus_multistream_surround_encoder_create (opus_int32 Fs, int channels, int mapping«
_family, int xstreams, int xcoupled_streams, unsigned char xmapping, int application, int xerror)
int opus_multistream_encoder_init (OpusMSEncoder xst, opus_int32 Fs, int channels, int streams, int
coupled_streams, const unsigned char xmapping, int application)

Initialize a previously allocated multistream encoder state.
int opus_multistream_surround_encoder_init (OpusMSEncoder x*st, opus_int32 Fs, int channels, int
mapping_family, int xstreams, int xcoupled_streams, unsigned char xmapping, int application)
int opus_multistream_encode (OpusMSEncoder xst, const opus_int16 xpcm, int frame_size, unsigned char
xdata, opus_int32 max_data_bytes)

Encodes a multistream Opus frame.
int opus_multistream_encode24 (OpusMSEncoder *st, const opus_int32 xpcm, int frame_size, unsigned char
xdata, opus_int32 max_data_bytes)

Encodes a multistream Opus frame.
int opus_multistream_encode_float (OpusMSEncoder xst, const float xpcm, int frame_size, unsigned char
xdata, opus_int32 max_data_bytes)

Encodes a multistream Opus frame from floating point input.
void opus_multistream_encoder_destroy (OpusMSEncoder sst)

Frees an OpusMSEncoder allocated by opus_multistream_encoder_create().
int opus_multistream_encoder_ctl (OpusMSEncoder *st, int request,...)

Perform a CTL function on a multistream Opus encoder.

Multistream decoder functions

opus_int32 opus_multistream_decoder_get_size (int streams, int coupled_streams)

Gets the size of an OpusMSDecoder structure.
OpusMSDecoder * opus_multistream_decoder_create (opus_int32 Fs, int channels, int streams, int coupled«
_streams, const unsigned char xmapping, int xerror)

Allocates and initializes a multistream decoder state.
int opus_multistream_decoder_init (OpusMSDecoder xst, opus_int32 Fs, int channels, int streams, int
coupled_streams, const unsigned char xmapping)

Initialize a previously allocated decoder state object.
int opus_multistream_decode (OpusMSDecoder xst, const unsigned char xdata, opus_int32 len, opus_int16
*pcm, int frame_size, int decode_fec)

Decode a multistream Opus packet.
int opus_multistream_decode24 (OpusMSDecoder xst, const unsigned char xdata, opus_int32 len, opus_int32
xpcm, int frame_size, int decode_fec)

Decode a multistream Opus packet.
int opus_multistream_decode_float (OpusMSDecoder *st, const unsigned char xdata, opus_int32 len, float
*pcm, int frame_size, int decode_fec)

Decode a multistream Opus packet with floating point output.
int opus_multistream_decoder_ctl (OpusMSDecoder x*st, int request,...)

Perform a CTL function on a multistream Opus decoder.
void opus_multistream_decoder_destroy (OpusMSDecoder xst)

Frees an OpusMSDecoder allocated by opus_multistream_decoder_create().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.8 opus_multistream.h

119

5.7.1

Detailed Description

Opus reference implementation multistream API.

5.8

opus_multistream.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00033
00034
00035
00036
00037
00038
00039
00040
00041
00047
00048
00055
00056
00086

00087
00099

00100
00175
00176
00183
00184
00203
00204
00205
00206
00207
00208
00209
00210
00211
00212
00213
00257
00258
00259
00260
00261

/* Copyright (c) 2011 Xiph.Org Foundation
Written by Jean-Marc Valin =/

/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

— Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

— Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
""AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

#ifndef OPUS_MULTISTREAM_H
#define OPUS_MULTISTREAM_H

#include "opus.h"

#ifdef ___cplusplus
extern "C" {

#endif
#define opus_check_encstate_ptr (ptr) ((ptr) + ((ptr) - (OpusEncoder*x) (ptr))
#define opus_check_decstate_ptr (ptr) ((ptr) + ((ptr) - (OpusDecoder*x) (ptr))

#define OPUS_MULTISTREAM_GET_ENCODER_STATE_REQUEST 5120

#define OPUS_MULTISTREAM_GET_DECODER_STATE_REQUEST 5122

#define OPUS_MULTISTREAM_GET_ENCODER_STATE (x,y) OPUS_MULTISTREAM_GET_ENCODER_STATE_REQUEST,
opus_check_int (x), opus_check_encstate_ptr (y)

#define OPUS_MULTISTREAM_GET_DECODER_STATE (x,y) OPUS_MULTISTREAM_ GET_DECODER_STATE_REQUEST,
opus_check_int (x), opus_check_decstate_ptr(y)

typedef struct OpusMSEncoder OpusMSEncoder;
typedef struct OpusMSDecoder OpusMSDecoder;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_encoder_get_size(
int streams,
int coupled_streams

)i

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_surround_encoder_get_size(
int channels,
int mapping_family

)i

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSEncoder xopus_multistream_encoder_create (
opus_int32 Fs,
int channels,
int streams,
int coupled_streams,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

120

File Documentation

00262
00263
00264
00265
00266
00267
00268
00269
00270
00271
00272
00273
00274
00275
00276
00277
00326
00327
00328
00329
00330
00331
00332
00333
00334
00335
00336
00337
00338
00339
00340
00341
00342
00343
00344
00345
00346
00377
00378
00379
00380
00381
00382
00383
00384
00415
00416
00417
00418
00419
00420
00421
00422
00460
00461
00462
00463
00464
00465
00466
00467
00472
00473
00486
00487
00508
00509
00510
00511
00512
00542
00543
00544
00545
00546
00547
00548
00549
00550
00585
00586

const unsigned char smapping,
int application,
int xerror

) OPUS_ARG_NONNULL (5) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSEncoder

opus_int32 Fs,
int channels,
int mapping_family,
int *streams,
int xcoupled_streams,
unsigned char *mapping,
int application,
int *error
) OPUS_ARG_NONNULL (4) OPUS_ARG_NONNULL (5)

OPUS_EXPORT int opus_multistream_encoder_init (

OpusMSEncoder =*st,
opus_int32 Fs,
int channels,
int streams,
int coupled_streams,
const unsigned char *mapping,
int application
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (6) ;

OPUS_EXPORT int opus_multistream_surround_encoder_init (

OpusMSEncoder =*st,
opus_int32 Fs,
int channels,
int mapping_family,
int xstreams,
int xcoupled_streams,
unsigned char *mapping,
int application
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (5)

OPUS_ARG_NONNULL (6) ;

OPUS_ARG_NONNULL (6)

xopus_multistream_surround_encoder_create (

OPUS_ARG_NONNULL (7) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_encode (

OpusMSEncoder =*st,
const opus_intl6 xpcm,
int frame_size,
unsigned char xdata,
opus_int32 max_data_bytes
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2)

OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_encode24 (

OpusMSEncoder =*st,
const opus_int32 xpcm,
int frame_size,
unsigned char =xdata,
opus_int32 max_data_bytes
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2)

OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_encode_float (

OpusMSEncoder =*st,
const float =pcm,
int frame_size,
unsigned char xdata,
opus_1int32 max_data_bytes
) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (2)

OPUS_ARG_NONNULL (4) ;

OPUS_EXPORT void opus_multistream_encoder_destroy (OpusMSEncoder =*st);

OPUS_EXPORT int opus_multistream_encoder_ctl (OpusMSEncoder xst, int request, ...) OPUS_ARG_NONNULL(1);

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_decoder_get_size(

int streams,
int coupled_streams

)i

OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSDecoder xopus_multistream_decoder_create (

opus_int32 Fs,
int channels,
int streams,
int coupled_streams,
const unsigned char *mapping,
int *error
) OPUS_ARG_NONNULL (5) ;

OPUS_EXPORT int opus_multistream_decoder_init (

OpusMSDecoder =*st,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.9 opus_types.h File Reference

121

00587 opus_int32 Fs,

00588 int channels,

00589 int streams,

00590 int coupled_streams,

00591 const unsigned char *mapping

00592) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (6) ;
00593

00623 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_decode (

00624 OpusMSDecoder =*st,

00625 const unsigned char =xdata,
00626 opus_int32 len,

00627 opus_intl6 xpcm,

00628 int frame_size,

00629 int decode_fec

00630) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;
00631

00661 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_decode24 (

00662 OpusMSDecoder =*st,

00663 const unsigned char =+data,
00664 opus_int32 len,

00665 opus_1int32 xpcm,

00666 int frame_size,

00667 int decode_fec

00668) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;
00669

00699 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_decode_float (

00700 OpusMSDecoder =*st,

00701 const unsigned char =data,
00702 opus_int32 len,

00703 float xpcm,

00704 int frame_size,

00705 int decode_fec

00706) OPUS_ARG_NONNULL (1) OPUS_ARG_NONNULL (4) ;
00707

00720 OPUS_EXPORT int opus_multistream_decoder_ctl (OpusMSDecoder x*st,

00721

00726 OPUS_EXPORT void opus_multistream_decoder_destroy (OpusMSDecoder =st);

00727

00732 #ifdef __ cplusplus

00733 }

00734 #endif

00735

00736 #endif /% OPUS_MULTISTREAM H «*/

5.9 opus_types.h File Reference

Opus reference implementation types.

OPUS_ARG_NONNULL (1) ;

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

122

File Documentation

This graph shows which files directly or indirectly include this file:

opus_types.h

opus_defines.h

opus.h

opus_custom.h

opus_multistream.h

Macros

« #define opus_int int /% used for counters etc; at least 16 bits */

#define opus_int64 long long
#define opus_int8 signed char

#define opus_uint unsigned int /x used for counters etc; at least 16 bits */
#define opus_uint64 unsigned long long
#define opus_uint8 unsigned char

Typedefs

typedef short opus_int16

« typedef unsigned short opus_uint16

typedef int opus_int32

« typedef unsigned int opus_uint32

5.9.1

Detailed Description

Opus reference implementation types.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.9 opus_types.h File Reference 123

5.9.2 Macro Definition Documentation
5.9.2.1 opus_int

#define opus_int int /% used for counters etc; at least 16 bits */

5.9.2.2 opus_int64

#define opus_int64 long long

5.9.2.3 opus_int8

#define opus_int8 signed char

5.9.2.4 opus_uint

#define opus_uint unsigned int /% used for counters etc; at least 16 bits */

5.9.2.5 opus_uint64

#define opus_uint64 unsigned long long

5.9.2.6 opus_uint8

#define opus_uint8 unsigned char

5.9.3 Typedef Documentation
5.9.3.1 opus_int16

typedef short opus_intl6

5.9.3.2 opus_int32

typedef int opus_int32

5.9.3.3 opus_uint16

typedef unsigned short opus_uintlé6

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

124

File Documentation

5.9.3.4 opus_uint32

typedef unsigned int opus_uint32

5.10 opus_types.h

Go to the documentation of this file.

00001
00002
00003
00004
00005
00006
00007
00008
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00028
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045

00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069

/% (C) COPYRIGHT 1994-2002 Xiph.Org Foundation =/

/* Modified by Jean-Marc Valin =/

/*
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions
are met:

— Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.

— Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
""AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR

A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,

EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR

PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF

LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

*/

/* opus_types.h based on ogg_types.h from libogg */

#ifndef OPUS_TYPES_H
#define OPUS_TYPES_H

#define opus_int int
#define opus_int64 long long
#define opus_int8 signed char

#define opus_uint
#define opus_uint64
#define opus_uint8

unsigned int
unsigned long long
unsigned char

/* used for counters etc;

/* used for counters etc;

at least 16 bits x/

at least 16 bits =/

/* Use the real stdint.h if it’s there (taken from Paul Hsieh’s pstdint.h) =/
#if (defined(__STDC__) && __STDC__ && defined(___STDC_VERSION__) && __STDC_VERSION___ >= 199901L) ||
(defined(__GNUC__) && (defined(_STDINT_H) || defined(_STDINT_H_)) || defined (HAVE_STDINT_H))

#include <stdint.h>

undef opus_int64

undef opus_int8

undef opus_uint64

undef opus_uint8

typedef int8_t opus_int8;
typedef uint8_t opus_uint8;
typedef intlé_t opus_intlé6;
typedef uintl6_t opus_uintl6;
typedef int32_t opus_int32;
typedef uint32_t opus_uint32;
typedef int64_t opus_int64;
typedef uint64_t opus_uint64;
#elif defined (_WIN32)

H= oW

if defined(___CYGWIN_)

include <_G_config.h>
typedef _G_int32_t opus_int32;
typedef _G_uint32_t opus_uint32;
typedef _G_intl6 opus_intl6;
typedef _G_uintl6 opus_uintl6;

elif defined(__MINGW32__)
typedef short opus_intl6;
typedef unsigned short opus_uintlé;

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.10 opus_types.h 125

00070 typedef int opus_int32;

00071 typedef unsigned int opus_uint32;
00072 # elif defined(___MWERKS_)

00073 typedef int opus_int32;

00074 typedef unsigned int opus_uint32;
00075 typedef short opus_intlé6;

00076 typedef unsigned short opus_uintl6;
00077 # else

00078 /* MSVC/Borland =/

00079 typedef __int32 opus_int32;

00080 typedef unsigned __int32 opus_uint32;
00081 typedef __intl6 opus_intl6;

00082 typedef unsigned __intl6 opus_uintlé6;
00083 # endif

00084

00085 #elif defined(__MACOS_)

00086

00087 # include <sys/types.h>

00088 typedef SIntl6 opus_intl6;

00089 typedef UIntl6 opus_uintl6;

00090 typedef SInt32 opus_int32;

00091 typedef UInt32 opus_uint32;

00092

00093 #elif (defined(__APPLE__) && defined(__MACH_)) /% MacOS X Framework build x/
00094

00095 # include <sys/types.h>

00096 typedef intlé_t opus_intl6;

00097 typedef u_intlé6_t opus_uintl6;
00098 typedef int32_t opus_int32;

00099 typedef u_int32_t opus_uint32;
00100

00101 #elif defined(__BEOS_)

00102

00103 /* Be x/

00104 # include <inttypes.h>

00105 typedef intlé opus_intl6;

00106 typedef u_intl6é opus_uintlé6;

00107 typedef int32_t opus_int32;

00108 typedef u_int32_t opus_uint32;
00109

00110 #elif defined (__EMX__)

00111

00112 /% 0S/2 GCC */

00113 typedef short opus_intl6;

00114 typedef unsigned short opus_uintlé6;
00115 typedef int opus_int32;

00116 typedef unsigned int opus_uint32;
00117

00118 #elif defined (DJGPP)

00119

00120 /% DJGPP =/

00121 typedef short opus_intl6;

00122 typedef unsigned short opus_uintlé6;
00123 typedef int opus_int32;

00124 typedef unsigned int opus_uint32;
00125

00126 #elif defined(R5900

00127

00128 /+ PS2 EE =/

00129 typedef int opus_int32;

00130 typedef unsigned opus_uint32;

00131 typedef short opus_intl6;

00132 typedef unsigned short opus_uintlé6;
00133

00134 #elif defined(__SYMBIAN32_)

00135

00136 /+ Symbian GCC «*/

00137 typedef signed short opus_intl6;
00138 typedef unsigned short opus_uintlé6;
00139 typedef signed int opus_int32;
00140 typedef unsigned int opus_uint32;
00141

00142 #elif defined (CONFIG_TI_C54X) || defined (CONFIG_TI_C55X)
00143

00144 typedef short opus_intl6;

00145 typedef unsigned short opus_uintlé6;
00146 typedef long opus_int32;

00147 typedef unsigned long opus_uint32;
00148

00149 #elif defined (CONFIG_TI_C6X)

00150

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

126

File Documentation

00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166

typedef
typedef
typedef
typedef

#else
/* Give
typedef
typedef
typedef
typedef
fendif

#endif /=

short opus_int16;

unsigned short opus_uintlé6;
int opus_int32;

unsigned int opus_uint32;

up, take a reasonable guess
short opus_intlé6;

unsigned short opus_uintlé6;
int opus_int32;

unsigned int opus_uint32;

OPUS_TYPES_H +/

*/

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Index

Decoder related CTLs, 68
OPUS_GET_GAIN, 69
OPUS_GET _IGNORE_EXTENSIONS, 69
OPUS_GET_LAST_PACKET_DURATION, 69
OPUS_GET_OSCE_BWE, 70
OPUS_GET_PITCH, 70
OPUS_SET_GAIN, 70
OPUS_SET_IGNORE_EXTENSIONS, 71
OPUS_SET_OSCE_BWE, 71

Error codes, 40
OPUS_ALLOC _FAIL, 40
OPUS_BAD ARG, 40
OPUS_BUFFER_TOO_SMALL, 41
OPUS_INTERNAL_ERROR, 41
OPUS_INVALID_PACKET, 41
OPUS_INVALID_STATE, 41
OPUS_OK, 41
OPUS_UNIMPLEMENTED, 41

Encoder related CTLs, 46
OPUS_GET_APPLICATION, 49
OPUS_GET_BITRATE, 49
OPUS_GET_COMPLEXITY, 49
OPUS_GET_DRED_DURATION, 50
OPUS_GET_DTX, 50
OPUS_GET_EXPERT_FRAME_DURATION, 50
OPUS_GET_FORCE_CHANNELS, 51
OPUS_GET_INBAND_FEC, 51
OPUS_GET_LOOKAHEAD, 52 Multistream specific encoder and decoder CTLs, 72
OPUS_GET _LSB DEPTH, 52 OPUS_MULTISTREAM_GET _DECODER_STATE,
OPUS_GET_MAX BANDWIDTH, 53 73

Generic CTLs, 65
OPUS_GET_BANDWIDTH, 66
OPUS_GET_FINAL_RANGE, 66
OPUS_GET_IN_DTX, 66
OPUS_GET_PHASE_INVERSION_DISABLED, 67
OPUS_GET_SAMPLE_RATE, 67
OPUS_RESET_STATE, 68
OPUS_SET_PHASE_INVERSION_DISABLED, 68

OPUS_GET_PACKET_LOSS_PERC, 53 OPUS_MULTISTREAM_GET_ENCODER_STATE,
OPUS_GET_PREDICTION_DISABLED, 53
OPUS_GET_QEXT, 54
OPUS_GET_SIGNAL, 54
OPUS_GET_VBR, 55
OPUS_GET_VBR_CONSTRAINT, 55
OPUS_SET_APPLICATION, 55
OPUS_SET_BANDWIDTH, 56
OPUS_SET_BITRATE, 57
OPUS_SET_COMPLEXITY, 57
OPUS_SET_DNN_BLOB, 57
OPUS_SET_DRED_DURATION, 57
OPUS_SET_DTX, 58
OPUS_SET_EXPERT_FRAME_DURATION, 58
OPUS_SET_FORCE_CHANNELS, 59
OPUS_SET_INBAND_FEC, 59
OPUS_SET_LSB_DEPTH, 60
OPUS_SET_MAX_BANDWIDTH, 61
OPUS_SET_PACKET_LOSS_PERGC, 61
OPUS_SET_PREDICTION_DISABLED, 62
OPUS_SET_QEXT, 62
OPUS_SET_SIGNAL, 62
OPUS_SET_VBR, 63
OPUS_SET_VBR_CONSTRAINT, 63

73

Opus, 1
Opus Custom, 86

opus_custom_decode, 89
opus_custom_decode24, 89
opus_custom_decode_float, 90
opus_custom_decoder_create, 90
opus_custom_decoder_ctl, 91
opus_custom_decoder_destroy, 91
opus_custom_decoder_get_size, 91
opus_custom_decoder_init, 92
opus_custom_encode, 92
opus_custom_encode24, 93
opus_custom_encode_float, 93
opus_custom_encoder_create, 94
opus_custom_encoder_ctl, 94
opus_custom_encoder_destroy, 95
opus_custom_encoder_get_size, 95
opus_custom_mode_create, 95
opus_custom_mode_destroy, 96
OpusCustomDecoder, 88
OpusCustomEncoder, 88

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

128

INDEX

OpusCustomMode, 88

Opus Decoder, 14
opus_decode, 17
opus_decode24, 18
opus_decode_float, 18
opus_decoder_create, 19
opus_decoder_ctl, 19
opus_decoder_destroy, 20
opus_decoder_dred_decode, 20
opus_decoder_dred_decode24, 21
opus_decoder_dred_decode_float, 21
opus_decoder_get_nb_samples, 22
opus_decoder_get_size, 22
opus_decoder_init, 23
opus_dred_alloc, 23
opus_dred_decoder_create, 24
opus_dred_decoder_ctl, 24
opus_dred_decoder_destroy, 24
opus_dred_decoder_get_size, 25
opus_dred_decoder_init, 25
opus_dred_free, 25
opus_dred_get_size, 25
opus_dred_parse, 26
opus_dred_process, 26
opus_packet_get_bandwidth, 27
opus_packet_get_nb_channels, 27
opus_packet_get_nb_frames, 28
opus_packet_get_nb_samples, 28
opus_packet_get_samples_per_frame, 29
opus_packet_has_lbrr, 29
opus_packet_parse, 30
opus_pcm_soft_clip, 30
OpusDecoder, 16
OpusDRED, 16
OpusDREDDecoder, 17

Opus Encoder, 7
opus_encode, 9
opus_encode24, 9
opus_encode_float, 10
opus_encoder_create, 11
opus_encoder_ctl, 12
opus_encoder_destroy, 12
opus_encoder_get_size, 12
opus_encoder_init, 13
OpusEncoder, 9

Opus library information functions, 71
opus_get_version_string, 71
opus_strerror, 72

Opus Multistream API, 73
opus_multistream_decode, 76
opus_multistream_decode24, 77
opus_multistream_decode_float, 77
opus_multistream_decoder_create, 78
opus_multistream_decoder_ctl, 78

opus_multistream_decoder_destroy, 79

opus_multistream_decoder_get_size, 79

opus_multistream_decoder_init, 80

opus_multistream_encode, 81

opus_multistream_encode24, 81

opus_multistream_encode_float, 82

opus_multistream_encoder_create, 83

opus_multistream_encoder_ctl, 83

opus_multistream_encoder_destroy, 84

opus_multistream_encoder_get_size, 84

opus_multistream_encoder_init, 85

opus_multistream_surround_encoder_create, 86

opus_multistream_surround_encoder_get_size, 86

opus_multistream_surround_encoder_init, 86

OpusMSDecoder, 76

OpusMSEncoder, 76
opus.h, 97, 101
OPUS_ALLOC_FAIL

Error codes, 40
OPUS_APPLICATION_AUDIO

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_RESTRICTED_CELT

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_RESTRICTED_LOWDELAY

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_RESTRICTED_SILK

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_VOIP

Pre-defined values for CTL interface, 43
OPUS_AUTO

Pre-defined values for CTL interface, 44
OPUS_BAD ARG

Error codes, 40
OPUS_BANDWIDTH_FULLBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_MEDIUMBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_NARROWBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_SUPERWIDEBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_WIDEBAND

Pre-defined values for CTL interface, 44
OPUS_BITRATE_MAX

Pre-defined values for CTL interface, 44
OPUS_BUFFER_TOO_SMALL

Error codes, 41
opus_custom.h, 104, 106

OPUS_CUSTOM_EXPORT, 106

OPUS_CUSTOM_EXPORT_STATIC, 106
opus_custom_decode

Opus Custom, 89
opus_custom_decode24

Opus Custom, 89

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

INDEX

129

opus_custom_decode_float
Opus Custom, 90
opus_custom_decoder_create
Opus Custom, 90
opus_custom_decoder_ctl
Opus Custom, 91
opus_custom_decoder_destroy
Opus Custom, 91
opus_custom_decoder_get_size
Opus Custom, 91
opus_custom_decoder_init
Opus Custom, 92
opus_custom_encode
Opus Custom, 92
opus_custom_encode24
Opus Custom, 93
opus_custom_encode_float
Opus Custom, 93
opus_custom_encoder_create
Opus Custom, 94
opus_custom_encoder_ctl
Opus Custom, 94
opus_custom_encoder_destroy
Opus Custom, 95
opus_custom_encoder_get_size
Opus Custom, 95
OPUS_CUSTOM_EXPORT
opus_custom.h, 106
OPUS_CUSTOM_EXPORT_STATIC
opus_custom.h, 106
opus_custom_mode_create
Opus Custom, 95
opus_custom_mode_destroy
Opus Custom, 96
opus_decode
Opus Decoder, 17
opus_decode24
Opus Decoder, 18
opus_decode_float
Opus Decoder, 18
opus_decoder_create
Opus Decoder, 19
opus_decoder_ctl
Opus Decoder, 19
opus_decoder_destroy
Opus Decoder, 20
opus_decoder_dred_decode
Opus Decoder, 20
opus_decoder_dred_decode24
Opus Decoder, 21
opus_decoder_dred_decode_float
Opus Decoder, 21
opus_decoder_get_nb_samples
Opus Decoder, 22

opus_decoder_get_size

Opus Decoder, 22
opus_decoder_init

Opus Decoder, 23
opus_defines.h, 108, 113
opus_dred_alloc

Opus Decoder, 23
opus_dred_decoder_create

Opus Decoder, 24
opus_dred_decoder_ctl

Opus Decoder, 24
opus_dred_decoder_destroy

Opus Decoder, 24
opus_dred_decoder_get_size

Opus Decoder, 25
opus_dred_decoder_init

Opus Decoder, 25
opus_dred_free

Opus Decoder, 25
opus_dred_get_size

Opus Decoder, 25
opus_dred_parse

Opus Decoder, 26
opus_dred_process

Opus Decoder, 26
opus_encode

Opus Encoder, 9
opus_encode24

Opus Encoder, 9
opus_encode_float

Opus Encoder, 10
opus_encoder_create

Opus Encoder, 11
opus_encoder_ctl

Opus Encoder, 12
opus_encoder_destroy

Opus Encoder, 12
opus_encoder_get_size

Opus Encoder, 12
opus_encoder_init

Opus Encoder, 13
OPUS_FRAMESIZE_100_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_10_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_120_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_20_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_2 5_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_40_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_5_MS

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

130

INDEX

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_60_MS

Pre-defined values for CTL interface, 46
OPUS_FRAMESIZE_80_MS

Pre-defined values for CTL interface, 46
OPUS_FRAMESIZE_ARG

Pre-defined values for CTL interface, 46
OPUS_GET_APPLICATION

Encoder related CTLs, 49
OPUS_GET_BANDWIDTH

Generic CTLs, 66
OPUS_GET_BITRATE

Encoder related CTLs, 49
OPUS_GET_COMPLEXITY

Encoder related CTLs, 49
OPUS_GET_DRED DURATION

Encoder related CTLs, 50
OPUS_GET_DTX

Encoder related CTLs, 50
OPUS_GET_EXPERT_FRAME_DURATION

Encoder related CTLs, 50
OPUS_GET_FINAL RANGE

Generic CTLs, 66
OPUS_GET_FORCE_CHANNELS

Encoder related CTLs, 51
OPUS_GET_GAIN

Decoder related CTLs, 69
OPUS_GET_IGNORE_EXTENSIONS

Decoder related CTLs, 69
OPUS_GET_IN_DTX

Generic CTLs, 66
OPUS_GET_INBAND_FEC

Encoder related CTLs, 51
OPUS_GET_LAST_PACKET_DURATION

Decoder related CTLs, 69
OPUS_GET_LOOKAHEAD

Encoder related CTLs, 52
OPUS_GET_LSB_DEPTH

Encoder related CTLs, 52
OPUS_GET_MAX_BANDWIDTH

Encoder related CTLs, 53
OPUS_GET_OSCE_BWE

Decoder related CTLs, 70
OPUS_GET_PACKET_LOSS PERC

Encoder related CTLs, 53
OPUS_GET_PHASE_INVERSION_DISABLED

Generic CTLs, 67
OPUS_GET_PITCH

Decoder related CTLs, 70
OPUS_GET_PREDICTION_DISABLED

Encoder related CTLs, 53
OPUS_GET_QEXT

Encoder related CTLs, 54
OPUS_GET_SAMPLE_RATE

Generic CTLs, 67
OPUS_GET_SIGNAL

Encoder related CTLs, 54
OPUS_GET_VBR

Encoder related CTLs, 55
OPUS_GET_VBR_CONSTRAINT

Encoder related CTLs, 55
opus_get_version_string

Opus library information functions, 71
opus_int

opus_types.h, 123
opus_int16

opus_types.h, 123
opus_int32

opus_types.h, 123
opus_int64

opus_types.h, 123
opus_int8

opus_types.h, 123
OPUS_INTERNAL_ERROR

Error codes, 41
OPUS_INVALID_PACKET

Error codes, 41
OPUS_INVALID_STATE

Error codes, 41
opus_multistream.h, 117, 119
opus_multistream_decode

Opus Multistream API, 76
opus_multistream_decode24

Opus Multistream API, 77
opus_multistream_decode_float

Opus Multistream API, 77
opus_multistream_decoder_create

Opus Multistream API, 78
opus_multistream_decoder_ctl

Opus Multistream API, 78
opus_multistream_decoder_destroy

Opus Multistream API, 79
opus_multistream_decoder_get_size

Opus Multistream API, 79
opus_multistream_decoder _init

Opus Multistream API, 80
opus_multistream_encode

Opus Multistream API, 81
opus_multistream_encode24

Opus Multistream API, 81
opus_multistream_encode_float

Opus Multistream API, 82
opus_multistream_encoder_create

Opus Multistream API, 83
opus_multistream_encoder_ctl

Opus Multistream API, 83
opus_multistream_encoder_destroy

Opus Multistream API, 84

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

INDEX

131

opus_multistream_encoder_get_size

Opus Multistream API, 84
opus_multistream_encoder_init

Opus Multistream API, 85
OPUS_MULTISTREAM_GET_DECODER_STATE

Multistream specific encoder and decoder CTLs, 73
OPUS_MULTISTREAM_GET_ENCODER_STATE

Multistream specific encoder and decoder CTLs, 73
opus_multistream_packet_pad

Repacketizer, 33
opus_multistream_packet_unpad

Repacketizer, 34
opus_multistream_surround_encoder_create

Opus Multistream API, 86
opus_multistream_surround_encoder_get_size

Opus Multistream API, 86
opus_multistream_surround_encoder_init

Opus Multistream API, 86
OPUS_OK

Error codes, 41
opus_packet_get_bandwidth

Opus Decoder, 27
opus_packet_get_nb_channels

Opus Decoder, 27
opus_packet_get_nb_frames

Opus Decoder, 28
opus_packet_get_nb_samples

Opus Decoder, 28
opus_packet_get_samples_per_frame

Opus Decoder, 29
opus_packet_has_lbrr

Opus Decoder, 29
opus_packet_pad

Repacketizer, 35
opus_packet_parse

Opus Decoder, 30
opus_packet_unpad

Repacketizer, 35
opus_pcm_soft_clip

Opus Decoder, 30
opus_repacketizer_cat

Repacketizer, 36
opus_repacketizer_create

Repacketizer, 37
opus_repacketizer_destroy

Repacketizer, 37
opus_repacketizer_get_nb_frames

Repacketizer, 37
opus_repacketizer_get_size

Repacketizer, 38
opus_repacketizer_init

Repacketizer, 38
opus_repacketizer_out

Repacketizer, 38

opus_repacketizer_out_range

Repacketizer, 39
OPUS_RESET_STATE

Generic CTLs, 68
OPUS_SET_APPLICATION

Encoder related CTLs, 55
OPUS_SET_BANDWIDTH

Encoder related CTLs, 56
OPUS_SET_BITRATE

Encoder related CTLs, 57
OPUS_SET_COMPLEXITY

Encoder related CTLs, 57
OPUS_SET_DNN_BLOB

Encoder related CTLs, 57
OPUS_SET_DRED_DURATION

Encoder related CTLs, 57
OPUS_SET DTX

Encoder related CTLs, 58
OPUS_SET_EXPERT_FRAME_DURATION

Encoder related CTLs, 58
OPUS_SET_FORCE_CHANNELS

Encoder related CTLs, 59
OPUS_SET_GAIN

Decoder related CTLs, 70
OPUS_SET_IGNORE_EXTENSIONS

Decoder related CTLs, 71
OPUS_SET_INBAND_FEC

Encoder related CTLs, 59
OPUS_SET_LSB_DEPTH

Encoder related CTLs, 60
OPUS_SET_MAX_BANDWIDTH

Encoder related CTLs, 61
OPUS_SET_OSCE_BWE

Decoder related CTLs, 71
OPUS_SET_PACKET_LOSS PERC

Encoder related CTLs, 61
OPUS_SET_PHASE_INVERSION_DISABLED

Generic CTLs, 68
OPUS_SET_PREDICTION_DISABLED

Encoder related CTLs, 62
OPUS_SET_QEXT

Encoder related CTLs, 62
OPUS_SET_SIGNAL

Encoder related CTLs, 62
OPUS_SET_VBR

Encoder related CTLs, 63
OPUS_SET_VBR_CONSTRAINT

Encoder related CTLs, 63
OPUS_SIGNAL_MUSIC

Pre-defined values for CTL interface, 46
OPUS_SIGNAL_VOICE

Pre-defined values for CTL interface, 46
opus_strerror

Opus library information functions, 72

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

132

INDEX

opus_types.h, 121, 124
opus_int, 123
opus_int16, 123
opus_int32, 123
opus_int64, 123
opus_int8, 123
opus_uint, 123
opus_uint16, 123
opus_uint32, 123
opus_uinté4, 123
opus_uint8, 123

opus_uint
opus_types.h, 123

opus_uint16
opus_types.h, 123
opus_uint32
opus_types.h, 123
opus_uint64
opus_types.h, 123
opus_uint8
opus_types.h, 123

OPUS_UNIMPLEMENTED
Error codes, 41

OpusCustomDecoder
Opus Custom, 88

OpusCustomEncoder
Opus Custom, 88

OpusCustomMode
Opus Custom, 88

OpusDecoder
Opus Decoder, 16

OpusDRED
Opus Decoder, 16

OpusDREDDecoder
Opus Decoder, 17

OpusEncoder
Opus Encoder, 9

OpusMSDecoder

Opus Multistream API, 76

OpusMSEncoder

Opus Multistream API, 76

OpusRepacketizer
Repacketizer, 33

Pre-defined values for CTL interface, 42
OPUS_APPLICATION_AUDIO, 43
OPUS_APPLICATION_RESTRICTED_CELT, 43
OPUS_APPLICATION_RESTRICTED_LOWDELAY,

43

OPUS_APPLICATION_RESTRICTED_SILK, 43
OPUS_APPLICATION_VOIP, 43

OPUS_AUTO, 44

OPUS_BANDWIDTH_FULLBAND, 44
OPUS_BANDWIDTH_MEDIUMBAND, 44

OPUS_BANDWIDTH_NARROWBAND, 44
OPUS_BANDWIDTH_SUPERWIDEBAND, 44
OPUS_BANDWIDTH_WIDEBAND, 44

OPUS_BITRATE_MAX, 44

OPUS_FRAMESIZE_100_MS, 45
OPUS_FRAMESIZE_10_MS, 45
OPUS_FRAMESIZE_120_MS, 45
OPUS_FRAMESIZE 20 MS, 45
OPUS_FRAMESIZE_2_5_MS, 45
OPUS_FRAMESIZE 40 MS, 45
OPUS_FRAMESIZE_5_MS, 45
OPUS_FRAMESIZE 60_MS, 46
OPUS_FRAMESIZE_80 MS, 46
OPUS_FRAMESIZE_ARG, 46

OPUS_SIGNAL_MUSIC, 46
OPUS_SIGNAL_VOICE, 46

Repacketizer, 31
opus_multistream_packet_pad, 33
opus_multistream_packet_unpad, 34

opus_packet_pad, 35
opus_packet_unpad, 35
opus_repacketizer_cat, 36

opus_repacketizer_create, 37
opus_repacketizer_destroy, 37
opus_repacketizer_get_nb_frames, 37
opus_repacketizer_get_size, 38

opus_repacketizer_init, 38
opus_repacketizer_out, 38

opus_repacketizer_out_range, 39

OpusRepacketizer, 33

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

	1 Opus
	2 Topic Index
	2.1 Topics

	3 File Index
	3.1 File List

	4 Topic Documentation
	4.1 Opus Encoder
	4.1.1 Detailed Description
	4.1.2 Typedef Documentation
	4.1.2.1 OpusEncoder

	4.1.3 Function Documentation
	4.1.3.1 opus_encode()
	4.1.3.2 opus_encode24()
	4.1.3.3 opus_encode_float()
	4.1.3.4 opus_encoder_create()
	4.1.3.5 opus_encoder_ctl()
	4.1.3.6 opus_encoder_destroy()
	4.1.3.7 opus_encoder_get_size()
	4.1.3.8 opus_encoder_init()

	4.2 Opus Decoder
	4.2.1 Detailed Description
	4.2.2 Typedef Documentation
	4.2.2.1 OpusDecoder
	4.2.2.2 OpusDRED
	4.2.2.3 OpusDREDDecoder

	4.2.3 Function Documentation
	4.2.3.1 opus_decode()
	4.2.3.2 opus_decode24()
	4.2.3.3 opus_decode_float()
	4.2.3.4 opus_decoder_create()
	4.2.3.5 opus_decoder_ctl()
	4.2.3.6 opus_decoder_destroy()
	4.2.3.7 opus_decoder_dred_decode()
	4.2.3.8 opus_decoder_dred_decode24()
	4.2.3.9 opus_decoder_dred_decode_float()
	4.2.3.10 opus_decoder_get_nb_samples()
	4.2.3.11 opus_decoder_get_size()
	4.2.3.12 opus_decoder_init()
	4.2.3.13 opus_dred_alloc()
	4.2.3.14 opus_dred_decoder_create()
	4.2.3.15 opus_dred_decoder_ctl()
	4.2.3.16 opus_dred_decoder_destroy()
	4.2.3.17 opus_dred_decoder_get_size()
	4.2.3.18 opus_dred_decoder_init()
	4.2.3.19 opus_dred_free()
	4.2.3.20 opus_dred_get_size()
	4.2.3.21 opus_dred_parse()
	4.2.3.22 opus_dred_process()
	4.2.3.23 opus_packet_get_bandwidth()
	4.2.3.24 opus_packet_get_nb_channels()
	4.2.3.25 opus_packet_get_nb_frames()
	4.2.3.26 opus_packet_get_nb_samples()
	4.2.3.27 opus_packet_get_samples_per_frame()
	4.2.3.28 opus_packet_has_lbrr()
	4.2.3.29 opus_packet_parse()
	4.2.3.30 opus_pcm_soft_clip()

	4.3 Repacketizer
	4.3.1 Detailed Description
	4.3.2 Typedef Documentation
	4.3.2.1 OpusRepacketizer

	4.3.3 Function Documentation
	4.3.3.1 opus_multistream_packet_pad()
	4.3.3.2 opus_multistream_packet_unpad()
	4.3.3.3 opus_packet_pad()
	4.3.3.4 opus_packet_unpad()
	4.3.3.5 opus_repacketizer_cat()
	4.3.3.6 opus_repacketizer_create()
	4.3.3.7 opus_repacketizer_destroy()
	4.3.3.8 opus_repacketizer_get_nb_frames()
	4.3.3.9 opus_repacketizer_get_size()
	4.3.3.10 opus_repacketizer_init()
	4.3.3.11 opus_repacketizer_out()
	4.3.3.12 opus_repacketizer_out_range()

	4.4 Error codes
	4.4.1 Detailed Description
	4.4.2 Macro Definition Documentation
	4.4.2.1 OPUS_ALLOC_FAIL
	4.4.2.2 OPUS_BAD_ARG
	4.4.2.3 OPUS_BUFFER_TOO_SMALL
	4.4.2.4 OPUS_INTERNAL_ERROR
	4.4.2.5 OPUS_INVALID_PACKET
	4.4.2.6 OPUS_INVALID_STATE
	4.4.2.7 OPUS_OK
	4.4.2.8 OPUS_UNIMPLEMENTED

	4.5 Pre-defined values for CTL interface
	4.5.1 Detailed Description
	4.5.2 Macro Definition Documentation
	4.5.2.1 OPUS_APPLICATION_AUDIO
	4.5.2.2 OPUS_APPLICATION_RESTRICTED_CELT
	4.5.2.3 OPUS_APPLICATION_RESTRICTED_LOWDELAY
	4.5.2.4 OPUS_APPLICATION_RESTRICTED_SILK
	4.5.2.5 OPUS_APPLICATION_VOIP
	4.5.2.6 OPUS_AUTO
	4.5.2.7 OPUS_BANDWIDTH_FULLBAND
	4.5.2.8 OPUS_BANDWIDTH_MEDIUMBAND
	4.5.2.9 OPUS_BANDWIDTH_NARROWBAND
	4.5.2.10 OPUS_BANDWIDTH_SUPERWIDEBAND
	4.5.2.11 OPUS_BANDWIDTH_WIDEBAND
	4.5.2.12 OPUS_BITRATE_MAX
	4.5.2.13 OPUS_FRAMESIZE_100_MS
	4.5.2.14 OPUS_FRAMESIZE_10_MS
	4.5.2.15 OPUS_FRAMESIZE_120_MS
	4.5.2.16 OPUS_FRAMESIZE_20_MS
	4.5.2.17 OPUS_FRAMESIZE_2_5_MS
	4.5.2.18 OPUS_FRAMESIZE_40_MS
	4.5.2.19 OPUS_FRAMESIZE_5_MS
	4.5.2.20 OPUS_FRAMESIZE_60_MS
	4.5.2.21 OPUS_FRAMESIZE_80_MS
	4.5.2.22 OPUS_FRAMESIZE_ARG
	4.5.2.23 OPUS_SIGNAL_MUSIC
	4.5.2.24 OPUS_SIGNAL_VOICE

	4.6 Encoder related CTLs
	4.6.1 Detailed Description
	4.6.2 Macro Definition Documentation
	4.6.2.1 OPUS_GET_APPLICATION
	4.6.2.2 OPUS_GET_BITRATE
	4.6.2.3 OPUS_GET_COMPLEXITY
	4.6.2.4 OPUS_GET_DRED_DURATION
	4.6.2.5 OPUS_GET_DTX
	4.6.2.6 OPUS_GET_EXPERT_FRAME_DURATION
	4.6.2.7 OPUS_GET_FORCE_CHANNELS
	4.6.2.8 OPUS_GET_INBAND_FEC
	4.6.2.9 OPUS_GET_LOOKAHEAD
	4.6.2.10 OPUS_GET_LSB_DEPTH
	4.6.2.11 OPUS_GET_MAX_BANDWIDTH
	4.6.2.12 OPUS_GET_PACKET_LOSS_PERC
	4.6.2.13 OPUS_GET_PREDICTION_DISABLED
	4.6.2.14 OPUS_GET_QEXT
	4.6.2.15 OPUS_GET_SIGNAL
	4.6.2.16 OPUS_GET_VBR
	4.6.2.17 OPUS_GET_VBR_CONSTRAINT
	4.6.2.18 OPUS_SET_APPLICATION
	4.6.2.19 OPUS_SET_BANDWIDTH
	4.6.2.20 OPUS_SET_BITRATE
	4.6.2.21 OPUS_SET_COMPLEXITY
	4.6.2.22 OPUS_SET_DNN_BLOB
	4.6.2.23 OPUS_SET_DRED_DURATION
	4.6.2.24 OPUS_SET_DTX
	4.6.2.25 OPUS_SET_EXPERT_FRAME_DURATION
	4.6.2.26 OPUS_SET_FORCE_CHANNELS
	4.6.2.27 OPUS_SET_INBAND_FEC
	4.6.2.28 OPUS_SET_LSB_DEPTH
	4.6.2.29 OPUS_SET_MAX_BANDWIDTH
	4.6.2.30 OPUS_SET_PACKET_LOSS_PERC
	4.6.2.31 OPUS_SET_PREDICTION_DISABLED
	4.6.2.32 OPUS_SET_QEXT
	4.6.2.33 OPUS_SET_SIGNAL
	4.6.2.34 OPUS_SET_VBR
	4.6.2.35 OPUS_SET_VBR_CONSTRAINT

	4.7 Generic CTLs
	4.7.1 Detailed Description
	4.7.2 Macro Definition Documentation
	4.7.2.1 OPUS_GET_BANDWIDTH
	4.7.2.2 OPUS_GET_FINAL_RANGE
	4.7.2.3 OPUS_GET_IN_DTX
	4.7.2.4 OPUS_GET_PHASE_INVERSION_DISABLED
	4.7.2.5 OPUS_GET_SAMPLE_RATE
	4.7.2.6 OPUS_RESET_STATE
	4.7.2.7 OPUS_SET_PHASE_INVERSION_DISABLED

	4.8 Decoder related CTLs
	4.8.1 Detailed Description
	4.8.2 Macro Definition Documentation
	4.8.2.1 OPUS_GET_GAIN
	4.8.2.2 OPUS_GET_IGNORE_EXTENSIONS
	4.8.2.3 OPUS_GET_LAST_PACKET_DURATION
	4.8.2.4 OPUS_GET_OSCE_BWE
	4.8.2.5 OPUS_GET_PITCH
	4.8.2.6 OPUS_SET_GAIN
	4.8.2.7 OPUS_SET_IGNORE_EXTENSIONS
	4.8.2.8 OPUS_SET_OSCE_BWE

	4.9 Opus library information functions
	4.9.1 Detailed Description
	4.9.2 Function Documentation
	4.9.2.1 opus_get_version_string()
	4.9.2.2 opus_strerror()

	4.10 Multistream specific encoder and decoder CTLs
	4.10.1 Detailed Description
	4.10.2 Macro Definition Documentation
	4.10.2.1 OPUS_MULTISTREAM_GET_DECODER_STATE
	4.10.2.2 OPUS_MULTISTREAM_GET_ENCODER_STATE

	4.11 Opus Multistream API
	4.11.1 Detailed Description
	4.11.2 Typedef Documentation
	4.11.2.1 OpusMSDecoder
	4.11.2.2 OpusMSEncoder

	4.11.3 Function Documentation
	4.11.3.1 opus_multistream_decode()
	4.11.3.2 opus_multistream_decode24()
	4.11.3.3 opus_multistream_decode_float()
	4.11.3.4 opus_multistream_decoder_create()
	4.11.3.5 opus_multistream_decoder_ctl()
	4.11.3.6 opus_multistream_decoder_destroy()
	4.11.3.7 opus_multistream_decoder_get_size()
	4.11.3.8 opus_multistream_decoder_init()
	4.11.3.9 opus_multistream_encode()
	4.11.3.10 opus_multistream_encode24()
	4.11.3.11 opus_multistream_encode_float()
	4.11.3.12 opus_multistream_encoder_create()
	4.11.3.13 opus_multistream_encoder_ctl()
	4.11.3.14 opus_multistream_encoder_destroy()
	4.11.3.15 opus_multistream_encoder_get_size()
	4.11.3.16 opus_multistream_encoder_init()
	4.11.3.17 opus_multistream_surround_encoder_create()
	4.11.3.18 opus_multistream_surround_encoder_get_size()
	4.11.3.19 opus_multistream_surround_encoder_init()

	4.12 Opus Custom
	4.12.1 Detailed Description
	4.12.2 Typedef Documentation
	4.12.2.1 OpusCustomDecoder
	4.12.2.2 OpusCustomEncoder
	4.12.2.3 OpusCustomMode

	4.12.3 Function Documentation
	4.12.3.1 opus_custom_decode()
	4.12.3.2 opus_custom_decode24()
	4.12.3.3 opus_custom_decode_float()
	4.12.3.4 opus_custom_decoder_create()
	4.12.3.5 opus_custom_decoder_ctl()
	4.12.3.6 opus_custom_decoder_destroy()
	4.12.3.7 opus_custom_decoder_get_size()
	4.12.3.8 opus_custom_decoder_init()
	4.12.3.9 opus_custom_encode()
	4.12.3.10 opus_custom_encode24()
	4.12.3.11 opus_custom_encode_float()
	4.12.3.12 opus_custom_encoder_create()
	4.12.3.13 opus_custom_encoder_ctl()
	4.12.3.14 opus_custom_encoder_destroy()
	4.12.3.15 opus_custom_encoder_get_size()
	4.12.3.16 opus_custom_mode_create()
	4.12.3.17 opus_custom_mode_destroy()

	5 File Documentation
	5.1 opus.h File Reference
	5.1.1 Detailed Description

	5.2 opus.h
	5.3 opus_custom.h File Reference
	5.3.1 Detailed Description
	5.3.2 Macro Definition Documentation
	5.3.2.1 OPUS_CUSTOM_EXPORT
	5.3.2.2 OPUS_CUSTOM_EXPORT_STATIC

	5.4 opus_custom.h
	5.5 opus_defines.h File Reference
	5.5.1 Detailed Description

	5.6 opus_defines.h
	5.7 opus_multistream.h File Reference
	5.7.1 Detailed Description

	5.8 opus_multistream.h
	5.9 opus_types.h File Reference
	5.9.1 Detailed Description
	5.9.2 Macro Definition Documentation
	5.9.2.1 opus_int
	5.9.2.2 opus_int64
	5.9.2.3 opus_int8
	5.9.2.4 opus_uint
	5.9.2.5 opus_uint64
	5.9.2.6 opus_uint8

	5.9.3 Typedef Documentation
	5.9.3.1 opus_int16
	5.9.3.2 opus_int32
	5.9.3.3 opus_uint16
	5.9.3.4 opus_uint32

	5.10 opus_types.h

	Index

