
Opus
1.6

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen 1.9.8

Mon Dec 15 2025 12:54:10

i

1 Opus 1

2 Topic Index 3

2.1 Topics . 3

3 File Index 5

3.1 File List . 5

4 Topic Documentation 7

4.1 Opus Encoder . 7

4.1.1 Detailed Description . 8

4.1.2 Typedef Documentation . 9

4.1.2.1 OpusEncoder . 9

4.1.3 Function Documentation . 9

4.1.3.1 opus_encode() . 9

4.1.3.2 opus_encode24() . 10

4.1.3.3 opus_encode_float() . 10

4.1.3.4 opus_encoder_create() . 11

4.1.3.5 opus_encoder_ctl() . 12

4.1.3.6 opus_encoder_destroy() . 12

4.1.3.7 opus_encoder_get_size() . 12

4.1.3.8 opus_encoder_init() . 13

4.2 Opus Decoder . 14

4.2.1 Detailed Description . 15

4.2.2 Typedef Documentation . 16

4.2.2.1 OpusDecoder . 16

4.2.2.2 OpusDRED . 17

4.2.2.3 OpusDREDDecoder . 17

4.2.3 Function Documentation . 17

4.2.3.1 opus_decode() . 17

4.2.3.2 opus_decode24() . 18

4.2.3.3 opus_decode_float() . 18

4.2.3.4 opus_decoder_create() . 19

4.2.3.5 opus_decoder_ctl() . 19

4.2.3.6 opus_decoder_destroy() . 20

4.2.3.7 opus_decoder_dred_decode() . 20

4.2.3.8 opus_decoder_dred_decode24() . 21

4.2.3.9 opus_decoder_dred_decode_float() . 21

4.2.3.10 opus_decoder_get_nb_samples() . 22

4.2.3.11 opus_decoder_get_size() . 22

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

ii

4.2.3.12 opus_decoder_init() . 23

4.2.3.13 opus_dred_alloc() . 23

4.2.3.14 opus_dred_decoder_create() . 24

4.2.3.15 opus_dred_decoder_ctl() . 24

4.2.3.16 opus_dred_decoder_destroy() . 24

4.2.3.17 opus_dred_decoder_get_size() . 25

4.2.3.18 opus_dred_decoder_init() . 25

4.2.3.19 opus_dred_free() . 25

4.2.3.20 opus_dred_get_size() . 25

4.2.3.21 opus_dred_parse() . 26

4.2.3.22 opus_dred_process() . 26

4.2.3.23 opus_packet_get_bandwidth() . 27

4.2.3.24 opus_packet_get_nb_channels() . 27

4.2.3.25 opus_packet_get_nb_frames() . 28

4.2.3.26 opus_packet_get_nb_samples() . 28

4.2.3.27 opus_packet_get_samples_per_frame() . 29

4.2.3.28 opus_packet_has_lbrr() . 29

4.2.3.29 opus_packet_parse() . 30

4.2.3.30 opus_pcm_soft_clip() . 30

4.3 Repacketizer . 31

4.3.1 Detailed Description . 32

4.3.2 Typedef Documentation . 33

4.3.2.1 OpusRepacketizer . 33

4.3.3 Function Documentation . 33

4.3.3.1 opus_multistream_packet_pad() . 33

4.3.3.2 opus_multistream_packet_unpad() . 34

4.3.3.3 opus_packet_pad() . 35

4.3.3.4 opus_packet_unpad() . 35

4.3.3.5 opus_repacketizer_cat() . 36

4.3.3.6 opus_repacketizer_create() . 37

4.3.3.7 opus_repacketizer_destroy() . 37

4.3.3.8 opus_repacketizer_get_nb_frames() . 37

4.3.3.9 opus_repacketizer_get_size() . 38

4.3.3.10 opus_repacketizer_init() . 38

4.3.3.11 opus_repacketizer_out() . 38

4.3.3.12 opus_repacketizer_out_range() . 39

4.4 Error codes . 40

4.4.1 Detailed Description . 40

4.4.2 Macro Definition Documentation . 40

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

iii

4.4.2.1 OPUS_ALLOC_FAIL . 40

4.4.2.2 OPUS_BAD_ARG . 41

4.4.2.3 OPUS_BUFFER_TOO_SMALL . 41

4.4.2.4 OPUS_INTERNAL_ERROR . 41

4.4.2.5 OPUS_INVALID_PACKET . 41

4.4.2.6 OPUS_INVALID_STATE . 41

4.4.2.7 OPUS_OK . 41

4.4.2.8 OPUS_UNIMPLEMENTED . 41

4.5 Pre-defined values for CTL interface . 42

4.5.1 Detailed Description . 43

4.5.2 Macro Definition Documentation . 43

4.5.2.1 OPUS_APPLICATION_AUDIO . 43

4.5.2.2 OPUS_APPLICATION_RESTRICTED_CELT . 43

4.5.2.3 OPUS_APPLICATION_RESTRICTED_LOWDELAY . 43

4.5.2.4 OPUS_APPLICATION_RESTRICTED_SILK . 43

4.5.2.5 OPUS_APPLICATION_VOIP . 44

4.5.2.6 OPUS_AUTO . 44

4.5.2.7 OPUS_BANDWIDTH_FULLBAND . 44

4.5.2.8 OPUS_BANDWIDTH_MEDIUMBAND . 44

4.5.2.9 OPUS_BANDWIDTH_NARROWBAND . 44

4.5.2.10 OPUS_BANDWIDTH_SUPERWIDEBAND . 44

4.5.2.11 OPUS_BANDWIDTH_WIDEBAND . 44

4.5.2.12 OPUS_BITRATE_MAX . 45

4.5.2.13 OPUS_FRAMESIZE_100_MS . 45

4.5.2.14 OPUS_FRAMESIZE_10_MS . 45

4.5.2.15 OPUS_FRAMESIZE_120_MS . 45

4.5.2.16 OPUS_FRAMESIZE_20_MS . 45

4.5.2.17 OPUS_FRAMESIZE_2_5_MS . 45

4.5.2.18 OPUS_FRAMESIZE_40_MS . 45

4.5.2.19 OPUS_FRAMESIZE_5_MS . 46

4.5.2.20 OPUS_FRAMESIZE_60_MS . 46

4.5.2.21 OPUS_FRAMESIZE_80_MS . 46

4.5.2.22 OPUS_FRAMESIZE_ARG . 46

4.5.2.23 OPUS_SIGNAL_MUSIC . 46

4.5.2.24 OPUS_SIGNAL_VOICE . 46

4.6 Encoder related CTLs . 46

4.6.1 Detailed Description . 48

4.6.2 Macro Definition Documentation . 49

4.6.2.1 OPUS_GET_APPLICATION . 49

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

iv

4.6.2.2 OPUS_GET_BITRATE . 49

4.6.2.3 OPUS_GET_COMPLEXITY . 49

4.6.2.4 OPUS_GET_DRED_DURATION . 50

4.6.2.5 OPUS_GET_DTX . 50

4.6.2.6 OPUS_GET_EXPERT_FRAME_DURATION . 50

4.6.2.7 OPUS_GET_FORCE_CHANNELS . 51

4.6.2.8 OPUS_GET_INBAND_FEC . 51

4.6.2.9 OPUS_GET_LOOKAHEAD . 52

4.6.2.10 OPUS_GET_LSB_DEPTH . 52

4.6.2.11 OPUS_GET_MAX_BANDWIDTH . 53

4.6.2.12 OPUS_GET_PACKET_LOSS_PERC . 53

4.6.2.13 OPUS_GET_PREDICTION_DISABLED . 54

4.6.2.14 OPUS_GET_QEXT . 54

4.6.2.15 OPUS_GET_SIGNAL . 54

4.6.2.16 OPUS_GET_VBR . 55

4.6.2.17 OPUS_GET_VBR_CONSTRAINT . 55

4.6.2.18 OPUS_SET_APPLICATION . 55

4.6.2.19 OPUS_SET_BANDWIDTH . 56

4.6.2.20 OPUS_SET_BITRATE . 57

4.6.2.21 OPUS_SET_COMPLEXITY . 57

4.6.2.22 OPUS_SET_DNN_BLOB . 57

4.6.2.23 OPUS_SET_DRED_DURATION . 58

4.6.2.24 OPUS_SET_DTX . 58

4.6.2.25 OPUS_SET_EXPERT_FRAME_DURATION . 58

4.6.2.26 OPUS_SET_FORCE_CHANNELS . 59

4.6.2.27 OPUS_SET_INBAND_FEC . 60

4.6.2.28 OPUS_SET_LSB_DEPTH . 60

4.6.2.29 OPUS_SET_MAX_BANDWIDTH . 61

4.6.2.30 OPUS_SET_PACKET_LOSS_PERC . 61

4.6.2.31 OPUS_SET_PREDICTION_DISABLED . 62

4.6.2.32 OPUS_SET_QEXT . 62

4.6.2.33 OPUS_SET_SIGNAL . 62

4.6.2.34 OPUS_SET_VBR . 63

4.6.2.35 OPUS_SET_VBR_CONSTRAINT . 63

4.7 Generic CTLs . 65

4.7.1 Detailed Description . 65

4.7.2 Macro Definition Documentation . 66

4.7.2.1 OPUS_GET_BANDWIDTH . 66

4.7.2.2 OPUS_GET_FINAL_RANGE . 66

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

v

4.7.2.3 OPUS_GET_IN_DTX . 67

4.7.2.4 OPUS_GET_PHASE_INVERSION_DISABLED . 67

4.7.2.5 OPUS_GET_SAMPLE_RATE . 67

4.7.2.6 OPUS_RESET_STATE . 68

4.7.2.7 OPUS_SET_PHASE_INVERSION_DISABLED . 68

4.8 Decoder related CTLs . 68

4.8.1 Detailed Description . 69

4.8.2 Macro Definition Documentation . 69

4.8.2.1 OPUS_GET_GAIN . 69

4.8.2.2 OPUS_GET_IGNORE_EXTENSIONS . 69

4.8.2.3 OPUS_GET_LAST_PACKET_DURATION . 70

4.8.2.4 OPUS_GET_OSCE_BWE . 70

4.8.2.5 OPUS_GET_PITCH . 70

4.8.2.6 OPUS_SET_GAIN . 70

4.8.2.7 OPUS_SET_IGNORE_EXTENSIONS . 71

4.8.2.8 OPUS_SET_OSCE_BWE . 71

4.9 Opus library information functions . 71

4.9.1 Detailed Description . 71

4.9.2 Function Documentation . 71

4.9.2.1 opus_get_version_string() . 71

4.9.2.2 opus_strerror() . 72

4.10 Multistream specific encoder and decoder CTLs . 72

4.10.1 Detailed Description . 72

4.10.2 Macro Definition Documentation . 73

4.10.2.1 OPUS_MULTISTREAM_GET_DECODER_STATE . 73

4.10.2.2 OPUS_MULTISTREAM_GET_ENCODER_STATE . 73

4.11 Opus Multistream API . 73

4.11.1 Detailed Description . 75

4.11.2 Typedef Documentation . 76

4.11.2.1 OpusMSDecoder . 76

4.11.2.2 OpusMSEncoder . 76

4.11.3 Function Documentation . 76

4.11.3.1 opus_multistream_decode() . 76

4.11.3.2 opus_multistream_decode24() . 77

4.11.3.3 opus_multistream_decode_float() . 77

4.11.3.4 opus_multistream_decoder_create() . 78

4.11.3.5 opus_multistream_decoder_ctl() . 79

4.11.3.6 opus_multistream_decoder_destroy() . 79

4.11.3.7 opus_multistream_decoder_get_size() . 79

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

vi

4.11.3.8 opus_multistream_decoder_init() . 80

4.11.3.9 opus_multistream_encode() . 81

4.11.3.10 opus_multistream_encode24() . 81

4.11.3.11 opus_multistream_encode_float() . 82

4.11.3.12 opus_multistream_encoder_create() . 83

4.11.3.13 opus_multistream_encoder_ctl() . 83

4.11.3.14 opus_multistream_encoder_destroy() . 84

4.11.3.15 opus_multistream_encoder_get_size() . 84

4.11.3.16 opus_multistream_encoder_init() . 85

4.11.3.17 opus_multistream_surround_encoder_create() . 86

4.11.3.18 opus_multistream_surround_encoder_get_size() . 86

4.11.3.19 opus_multistream_surround_encoder_init() . 86

4.12 Opus Custom . 86

4.12.1 Detailed Description . 88

4.12.2 Typedef Documentation . 88

4.12.2.1 OpusCustomDecoder . 88

4.12.2.2 OpusCustomEncoder . 88

4.12.2.3 OpusCustomMode . 89

4.12.3 Function Documentation . 89

4.12.3.1 opus_custom_decode() . 89

4.12.3.2 opus_custom_decode24() . 89

4.12.3.3 opus_custom_decode_float() . 90

4.12.3.4 opus_custom_decoder_create() . 90

4.12.3.5 opus_custom_decoder_ctl() . 91

4.12.3.6 opus_custom_decoder_destroy() . 91

4.12.3.7 opus_custom_decoder_get_size() . 91

4.12.3.8 opus_custom_decoder_init() . 92

4.12.3.9 opus_custom_encode() . 92

4.12.3.10 opus_custom_encode24() . 93

4.12.3.11 opus_custom_encode_float() . 93

4.12.3.12 opus_custom_encoder_create() . 94

4.12.3.13 opus_custom_encoder_ctl() . 95

4.12.3.14 opus_custom_encoder_destroy() . 95

4.12.3.15 opus_custom_encoder_get_size() . 95

4.12.3.16 opus_custom_mode_create() . 95

4.12.3.17 opus_custom_mode_destroy() . 96

5 File Documentation 97

5.1 opus.h File Reference . 97

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

vii

5.1.1 Detailed Description . 101

5.2 opus.h . 101

5.3 opus_custom.h File Reference . 104

5.3.1 Detailed Description . 105

5.3.2 Macro Definition Documentation . 106

5.3.2.1 OPUS_CUSTOM_EXPORT . 106

5.3.2.2 OPUS_CUSTOM_EXPORT_STATIC . 106

5.4 opus_custom.h . 106

5.5 opus_defines.h File Reference . 108

5.5.1 Detailed Description . 113

5.6 opus_defines.h . 113

5.7 opus_multistream.h File Reference . 117

5.7.1 Detailed Description . 119

5.8 opus_multistream.h . 119

5.9 opus_types.h File Reference . 121

5.9.1 Detailed Description . 122

5.9.2 Macro Definition Documentation . 123

5.9.2.1 opus_int . 123

5.9.2.2 opus_int64 . 123

5.9.2.3 opus_int8 . 123

5.9.2.4 opus_uint . 123

5.9.2.5 opus_uint64 . 123

5.9.2.6 opus_uint8 . 123

5.9.3 Typedef Documentation . 123

5.9.3.1 opus_int16 . 123

5.9.3.2 opus_int32 . 123

5.9.3.3 opus_uint16 . 123

5.9.3.4 opus_uint32 . 124

5.10 opus_types.h . 124

Index 127

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 1

Opus

The Opus codec is designed for interactive speech and audio transmission over the Internet. It is designed by the IETF
Codec Working Group and incorporates technology from Skype's SILK codec and Xiph.Org's CELT codec.

The Opus codec is designed to handle a wide range of interactive audio applications, including Voice over IP, videocon-
ferencing, in-game chat, and even remote live music performances. It can scale from low bit-rate narrowband speech to
very high quality stereo music. Its main features are:

• Sampling rates from 8 to 48 kHz

• Bit-rates from 6 kb/s to 510 kb/s

• Support for both constant bit-rate (CBR) and variable bit-rate (VBR)

• Audio bandwidth from narrowband to full-band

• Support for speech and music

• Support for mono and stereo

• Support for multichannel (up to 255 channels)

• Frame sizes from 2.5 ms to 60 ms

• Good loss robustness and packet loss concealment (PLC)

• Floating point and fixed-point implementation

Documentation sections:

• Opus Encoder

• Opus Decoder

• Repacketizer

• Opus Multistream API

• Opus library information functions

• Opus Custom

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

2 Opus

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 2

Topic Index

2.1 Topics

Here is a list of all topics with brief descriptions:

Opus Encoder . 7
Opus Decoder . 14
Repacketizer . 31
Error codes . 40
Pre-defined values for CTL interface . 42
Encoder related CTLs . 46
Generic CTLs . 65
Decoder related CTLs . 68
Opus library information functions . 71
Multistream specific encoder and decoder CTLs . 72
Opus Multistream API . 73
Opus Custom . 86

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4 Topic Index

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 3

File Index

3.1 File List

Here is a list of all files with brief descriptions:

opus.h
Opus reference implementation API . 97

opus_custom.h
Opus-Custom reference implementation API . 104

opus_defines.h
Opus reference implementation constants . 108

opus_multistream.h
Opus reference implementation multistream API . 117

opus_types.h
Opus reference implementation types . 121

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

6 File Index

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 4

Topic Documentation

4.1 Opus Encoder

This page describes the process and functions used to encode Opus.

Typedefs

• typedef struct OpusEncoder OpusEncoder

Opus encoder state.

Functions

• int opus_encoder_get_size (int channels)

Gets the size of an OpusEncoder structure.

• OpusEncoder ∗ opus_encoder_create (opus_int32 Fs, int channels, int application, int ∗error)

Allocates and initializes an encoder state.

• int opus_encoder_init (OpusEncoder ∗st, opus_int32 Fs, int channels, int application)

Initializes a previously allocated encoder state The memory pointed to by st must be at least the size returned by
opus_encoder_get_size().

• opus_int32 opus_encode (OpusEncoder ∗st, const opus_int16 ∗pcm, int frame_size, unsigned char ∗data,
opus_int32 max_data_bytes)

Encodes an Opus frame.

• opus_int32 opus_encode24 (OpusEncoder ∗st, const opus_int32 ∗pcm, int frame_size, unsigned char ∗data,
opus_int32 max_data_bytes)

Encodes an Opus frame.

• opus_int32 opus_encode_float (OpusEncoder ∗st, const float ∗pcm, int frame_size, unsigned char ∗data,
opus_int32 max_data_bytes)

Encodes an Opus frame from floating point input.

• void opus_encoder_destroy (OpusEncoder ∗st)

Frees an OpusEncoder allocated by opus_encoder_create().

• int opus_encoder_ctl (OpusEncoder ∗st, int request,...)

Perform a CTL function on an Opus encoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

8 Topic Documentation

4.1.1 Detailed Description

This page describes the process and functions used to encode Opus.

Since Opus is a stateful codec, the encoding process starts with creating an encoder state. This can be done with:
int error;
OpusEncoder *enc;
enc = opus_encoder_create(Fs, channels, application, &error);

From this point, enc can be used for encoding an audio stream. An encoder state must not be used for more than one
stream at the same time. Similarly, the encoder state must not be re-initialized for each frame.

While opus_encoder_create() allocates memory for the state, it's also possible to initialize pre-allocated memory:
int size;
int error;
OpusEncoder *enc;
size = opus_encoder_get_size(channels);
enc = malloc(size);
error = opus_encoder_init(enc, Fs, channels, application);

where opus_encoder_get_size() returns the required size for the encoder state. Note that future versions of this code
may change the size, so no assumptions should be made about it.

The encoder state is always continuous in memory and only a shallow copy is sufficient to copy it (e.g. memcpy())

It is possible to change some of the encoder's settings using the opus_encoder_ctl() interface. All these settings already
default to the recommended value, so they should only be changed when necessary. The most common settings one
may want to change are:
opus_encoder_ctl(enc, OPUS_SET_BITRATE(bitrate));
opus_encoder_ctl(enc, OPUS_SET_COMPLEXITY(complexity));
opus_encoder_ctl(enc, OPUS_SET_SIGNAL(signal_type));

where

• bitrate is in bits per second (b/s)

• complexity is a value from 1 to 10, where 1 is the lowest complexity and 10 is the highest

• signal_type is either OPUS_AUTO (default), OPUS_SIGNAL_VOICE, or OPUS_SIGNAL_MUSIC

See Encoder related CTLs and Generic CTLs for a complete list of parameters that can be set or queried. Most param-
eters can be set or changed at any time during a stream.

To encode a frame, opus_encode() or opus_encode_float() must be called with exactly one frame (2.5, 5, 10, 20, 40 or
60 ms) of audio data:
len = opus_encode(enc, audio_frame, frame_size, packet, max_packet);

where

• audio_frame is the audio data in opus_int16 (or float for opus_encode_float())

• frame_size is the duration of the frame in samples (per channel)

• packet is the byte array to which the compressed data is written

• max_packet is the maximum number of bytes that can be written in the packet (4000 bytes is recommended). Do
not use max_packet to control VBR target bitrate, instead use the OPUS_SET_BITRATE CTL.

opus_encode() and opus_encode_float() return the number of bytes actually written to the packet. The return value can
be negative, which indicates that an error has occurred. If the return value is 2 bytes or less, then the packet does not
need to be transmitted (DTX).

Once the encoder state if no longer needed, it can be destroyed with
opus_encoder_destroy(enc);

If the encoder was created with opus_encoder_init() rather than opus_encoder_create(), then no action is required aside
from potentially freeing the memory that was manually allocated for it (calling free(enc) for the example above)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.1 Opus Encoder 9

4.1.2 Typedef Documentation

4.1.2.1 OpusEncoder

typedef struct OpusEncoder OpusEncoder

Opus encoder state.

This contains the complete state of an Opus encoder. It is position independent and can be freely copied.

See also

opus_encoder_create,opus_encoder_init

4.1.3 Function Documentation

4.1.3.1 opus_encode()

opus_int32 opus_encode (

OpusEncoder ∗ st,

const opus_int16 ∗ pcm,

int frame_size,

unsigned char ∗ data,

opus_int32 max_data_bytes)

Encodes an Opus frame.

Parameters

in st OpusEncoder∗: Encoder state

in pcm opus_int16∗: Input signal (interleaved if 2 channels). length is
frame_size∗channels∗sizeof(opus_int16)

in frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out data unsigned char∗: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes opus_int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET_BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

10 Topic Documentation

4.1.3.2 opus_encode24()

opus_int32 opus_encode24 (

OpusEncoder ∗ st,

const opus_int32 ∗ pcm,

int frame_size,

unsigned char ∗ data,

opus_int32 max_data_bytes)

Encodes an Opus frame.

Parameters

in st OpusEncoder∗: Encoder state

in pcm opus_int32∗: Input signal (interleaved if 2 channels) representing (or slightly
exceeding) 24-bit values. length is frame_size∗channels∗sizeof(opus_int32)

in frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out data unsigned char∗: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes opus_int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET_BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.1.3.3 opus_encode_float()

opus_int32 opus_encode_float (

OpusEncoder ∗ st,

const float ∗ pcm,

int frame_size,

unsigned char ∗ data,

opus_int32 max_data_bytes)

Encodes an Opus frame from floating point input.

Parameters

in st OpusEncoder∗: Encoder state

in pcm float∗: Input in float format (interleaved if 2 channels), with a normal range of +/-1.0.
Samples with a range beyond +/-1.0 are supported but will be clipped by decoders
using the integer API and should only be used if it is known that the far end supports
extended dynamic range. length is frame_size∗channels∗sizeof(float)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.1 Opus Encoder 11

Parameters

in frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out data unsigned char∗: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes opus_int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET_BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.1.3.4 opus_encoder_create()

OpusEncoder ∗ opus_encoder_create (

opus_int32 Fs,

int channels,

int application,

int ∗ error)

Allocates and initializes an encoder state.

There are three coding modes:

OPUS_APPLICATION_VOIP gives best quality at a given bitrate for voice signals. It enhances the input signal by high-
pass filtering and emphasizing formants and harmonics. Optionally it includes in-band forward error correction to protect
against packet loss. Use this mode for typical VoIP applications. Because of the enhancement, even at high bitrates the
output may sound different from the input.

OPUS_APPLICATION_AUDIO gives best quality at a given bitrate for most non-voice signals like music. Use this mode
for music and mixed (music/voice) content, broadcast, and applications requiring less than 15 ms of coding delay.

OPUS_APPLICATION_RESTRICTED_LOWDELAY configures low-delay mode that disables the speech-optimized
mode in exchange for slightly reduced delay. This mode can only be set on an newly initialized or freshly reset en-
coder because it changes the codec delay.

This is useful when the caller knows that the speech-optimized modes will not be needed (use with caution).

Parameters

in Fs opus_int32: Sampling rate of input signal (Hz) This must be one of 8000, 12000, 16000,
24000, or 48000.

in channels int: Number of channels (1 or 2) in input signal

in application int: Coding mode (one of OPUS_APPLICATION_VOIP, OPUS_APPLICATION_AUDIO, or
OPUS_APPLICATION_RESTRICTED_LOWDELAY)

out error int∗: Error codes

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

12 Topic Documentation

Note

Regardless of the sampling rate and number channels selected, the Opus encoder can switch to a lower audio
bandwidth or number of channels if the bitrate selected is too low. This also means that it is safe to always use 48
kHz stereo input and let the encoder optimize the encoding.

4.1.3.5 opus_encoder_ctl()

int opus_encoder_ctl (

OpusEncoder ∗ st,

int request,

...)

Perform a CTL function on an Opus encoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

st OpusEncoder∗: Encoder state.

request This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs or
Encoder related CTLs.

See also

Generic CTLs

Encoder related CTLs

4.1.3.6 opus_encoder_destroy()

void opus_encoder_destroy (

OpusEncoder ∗ st)

Frees an OpusEncoder allocated by opus_encoder_create().

Parameters

in st OpusEncoder∗: State to be freed.

4.1.3.7 opus_encoder_get_size()

int opus_encoder_get_size (

int channels)

Gets the size of an OpusEncoder structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.1 Opus Encoder 13

Parameters

in channels int: Number of channels. This must be 1 or 2.

Returns

The size in bytes.

Note

Since this function does not take the application as input, it will overestimate the size required for OPUS←↩

_APPLICATION_RESTRICTED_SILK and OPUS_APPLICATION_RESTRICTED_CELT. That is generally not a
problem, except when trying to know the size to use for a copy.

4.1.3.8 opus_encoder_init()

int opus_encoder_init (

OpusEncoder ∗ st,

opus_int32 Fs,

int channels,

int application)

Initializes a previously allocated encoder state The memory pointed to by st must be at least the size returned by
opus_encoder_get_size().

This is intended for applications which use their own allocator instead of malloc.

See also

opus_encoder_create(),opus_encoder_get_size() To reset a previously initialized state, use the OPUS_RESET_STATE
CTL.

Parameters

in st OpusEncoder∗: Encoder state

in Fs opus_int32: Sampling rate of input signal (Hz) This must be one of 8000, 12000, 16000,
24000, or 48000.

in channels int: Number of channels (1 or 2) in input signal

in application int: Coding mode (one of OPUS_APPLICATION_VOIP, OPUS_APPLICATION_AUDIO, or
OPUS_APPLICATION_RESTRICTED_LOWDELAY)

Return values

OPUS_OK Success or Error codes

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

14 Topic Documentation

4.2 Opus Decoder

This page describes the process and functions used to decode Opus.

Typedefs

• typedef struct OpusDecoder OpusDecoder

Opus decoder state.

• typedef struct OpusDREDDecoder OpusDREDDecoder

Opus DRED decoder.

• typedef struct OpusDRED OpusDRED

Opus DRED state.

Functions

• int opus_decoder_get_size (int channels)

Gets the size of an OpusDecoder structure.

• OpusDecoder ∗ opus_decoder_create (opus_int32 Fs, int channels, int ∗error)

Allocates and initializes a decoder state.

• int opus_decoder_init (OpusDecoder ∗st, opus_int32 Fs, int channels)

Initializes a previously allocated decoder state.

• int opus_decode (OpusDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int16 ∗pcm, int frame_size,
int decode_fec)

Decode an Opus packet.

• int opus_decode24 (OpusDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int32 ∗pcm, int frame←↩

_size, int decode_fec)

Decode an Opus packet.

• int opus_decode_float (OpusDecoder ∗st, const unsigned char ∗data, opus_int32 len, float ∗pcm, int frame_size,
int decode_fec)

Decode an Opus packet with floating point output.

• int opus_decoder_ctl (OpusDecoder ∗st, int request,...)

Perform a CTL function on an Opus decoder.

• void opus_decoder_destroy (OpusDecoder ∗st)

Frees an OpusDecoder allocated by opus_decoder_create().

• int opus_dred_decoder_get_size (void)

Gets the size of an OpusDREDDecoder structure.

• OpusDREDDecoder ∗ opus_dred_decoder_create (int ∗error)

Allocates and initializes an OpusDREDDecoder state.

• int opus_dred_decoder_init (OpusDREDDecoder ∗dec)

Initializes an OpusDREDDecoder state.

• void opus_dred_decoder_destroy (OpusDREDDecoder ∗dec)

Frees an OpusDREDDecoder allocated by opus_dred_decoder_create().

• int opus_dred_decoder_ctl (OpusDREDDecoder ∗dred_dec, int request,...)

Perform a CTL function on an Opus DRED decoder.

• int opus_dred_get_size (void)

Gets the size of an OpusDRED structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 15

• OpusDRED ∗ opus_dred_alloc (int ∗error)

Allocates and initializes a DRED state.

• void opus_dred_free (OpusDRED ∗dec)

Frees an OpusDRED allocated by opus_dred_create().

• int opus_dred_parse (OpusDREDDecoder ∗dred_dec, OpusDRED ∗dred, const unsigned char ∗data, opus_int32
len, opus_int32 max_dred_samples, opus_int32 sampling_rate, int ∗dred_end, int defer_processing)

Decode an Opus DRED packet.

• int opus_dred_process (OpusDREDDecoder ∗dred_dec, const OpusDRED ∗src, OpusDRED ∗dst)

Finish decoding an Opus DRED packet.

• int opus_decoder_dred_decode (OpusDecoder ∗st, const OpusDRED ∗dred, opus_int32 dred_offset, opus_int16
∗pcm, opus_int32 frame_size)

Decode audio from an Opus DRED packet with 16-bit output.

• int opus_decoder_dred_decode24 (OpusDecoder ∗st, const OpusDRED ∗dred, opus_int32 dred_offset,
opus_int32 ∗pcm, opus_int32 frame_size)

Decode audio from an Opus DRED packet with 24-bit output.

• int opus_decoder_dred_decode_float (OpusDecoder ∗st, const OpusDRED ∗dred, opus_int32 dred_offset, float
∗pcm, opus_int32 frame_size)

Decode audio from an Opus DRED packet with floating point output.

• int opus_packet_parse (const unsigned char ∗data, opus_int32 len, unsigned char ∗out_toc, const unsigned char
∗frames[48], opus_int16 size[48], int ∗payload_offset)

Parse an opus packet into one or more frames.

• int opus_packet_get_bandwidth (const unsigned char ∗data)

Gets the bandwidth of an Opus packet.

• int opus_packet_get_samples_per_frame (const unsigned char ∗data, opus_int32 Fs)

Gets the number of samples per frame from an Opus packet.

• int opus_packet_get_nb_channels (const unsigned char ∗data)

Gets the number of channels from an Opus packet.

• int opus_packet_get_nb_frames (const unsigned char packet[], opus_int32 len)

Gets the number of frames in an Opus packet.

• int opus_packet_get_nb_samples (const unsigned char packet[], opus_int32 len, opus_int32 Fs)

Gets the number of samples of an Opus packet.

• int opus_packet_has_lbrr (const unsigned char packet[], opus_int32 len)

Checks whether an Opus packet has LBRR.

• int opus_decoder_get_nb_samples (const OpusDecoder ∗dec, const unsigned char packet[], opus_int32 len)

Gets the number of samples of an Opus packet.

• void opus_pcm_soft_clip (float ∗pcm, int frame_size, int channels, float ∗softclip_mem)

Applies soft-clipping to bring a float signal within the [-1,1] range.

4.2.1 Detailed Description

This page describes the process and functions used to decode Opus.

The decoding process also starts with creating a decoder state. This can be done with:
int error;
OpusDecoder *dec;
dec = opus_decoder_create(Fs, channels, &error);

where

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

16 Topic Documentation

• Fs is the sampling rate and must be 8000, 12000, 16000, 24000, or 48000

• channels is the number of channels (1 or 2)

• error will hold the error code in case of failure (or OPUS_OK on success)

• the return value is a newly created decoder state to be used for decoding

While opus_decoder_create() allocates memory for the state, it's also possible to initialize pre-allocated memory:
int size;
int error;
OpusDecoder *dec;
size = opus_decoder_get_size(channels);
dec = malloc(size);
error = opus_decoder_init(dec, Fs, channels);

where opus_decoder_get_size() returns the required size for the decoder state. Note that future versions of this code
may change the size, so no assumptions should be made about it.

The decoder state is always continuous in memory and only a shallow copy is sufficient to copy it (e.g. memcpy())

To decode a frame, opus_decode() or opus_decode_float() must be called with a packet of compressed audio data:
frame_size = opus_decode(dec, packet, len, decoded, max_size, 0);

where

• packet is the byte array containing the compressed data

• len is the exact number of bytes contained in the packet

• decoded is the decoded audio data in opus_int16 (or float for opus_decode_float())

• max_size is the max duration of the frame in samples (per channel) that can fit into the decoded_frame array

opus_decode() and opus_decode_float() return the number of samples (per channel) decoded from the packet. If that
value is negative, then an error has occurred. This can occur if the packet is corrupted or if the audio buffer is too small
to hold the decoded audio.

Opus is a stateful codec with overlapping blocks and as a result Opus packets are not coded independently of each
other. Packets must be passed into the decoder serially and in the correct order for a correct decode. Lost packets can
be replaced with loss concealment by calling the decoder with a null pointer and zero length for the missing packet.

A single codec state may only be accessed from a single thread at a time and any required locking must be performed
by the caller. Separate streams must be decoded with separate decoder states and can be decoded in parallel unless
the library was compiled with NONTHREADSAFE_PSEUDOSTACK defined.

4.2.2 Typedef Documentation

4.2.2.1 OpusDecoder

typedef struct OpusDecoder OpusDecoder

Opus decoder state.

This contains the complete state of an Opus decoder. It is position independent and can be freely copied.

See also

opus_decoder_create,opus_decoder_init

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 17

4.2.2.2 OpusDRED

typedef struct OpusDRED OpusDRED

Opus DRED state.

This contains the complete state of an Opus DRED packet. It is position independent and can be freely copied.

See also

opus_dred_create,opus_dred_init

4.2.2.3 OpusDREDDecoder

typedef struct OpusDREDDecoder OpusDREDDecoder

Opus DRED decoder.

This contains the complete state of an Opus DRED decoder. It is position independent and can be freely copied.

See also

opus_dred_decoder_create,opus_dred_decoder_init

4.2.3 Function Documentation

4.2.3.1 opus_decode()

int opus_decode (

OpusDecoder ∗ st,

const unsigned char ∗ data,

opus_int32 len,

opus_int16 ∗ pcm,

int frame_size,

int decode_fec)

Decode an Opus packet.

Parameters

in st OpusDecoder∗: Decoder state

in data char∗: Input payload. Use a NULL pointer to indicate packet loss

in len opus_int32: Number of bytes in payload∗
out pcm opus_int16∗: Output signal (interleaved if 2 channels). length is

frame_size∗channels∗sizeof(opus_int16)

in frame_size Number of samples per channel of available space in pcm. If this is less than the maximum
packet duration (120ms; 5760 for 48kHz), this function will not be capable of decoding some
packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then frame_size needs
to be exactly the duration of audio that is missing, otherwise the decoder will not be in the
optimal state to decode the next incoming packet. For the PLC and FEC cases, frame_size
must be a multiple of 2.5 ms.

in decode_fec int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

18 Topic Documentation

Returns

Number of decoded samples per channel or Error codes

4.2.3.2 opus_decode24()

int opus_decode24 (

OpusDecoder ∗ st,

const unsigned char ∗ data,

opus_int32 len,

opus_int32 ∗ pcm,

int frame_size,

int decode_fec)

Decode an Opus packet.

Parameters

in st OpusDecoder∗: Decoder state

in data char∗: Input payload. Use a NULL pointer to indicate packet loss

in len opus_int32: Number of bytes in payload∗
out pcm opus_int32∗: Output signal (interleaved if 2 channels) representing (or slightly

exceeding) 24-bit values. length is frame_size∗channels∗sizeof(opus_int32)

in frame_size Number of samples per channel of available space in pcm. If this is less than the maximum
packet duration (120ms; 5760 for 48kHz), this function will not be capable of decoding some
packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then frame_size needs
to be exactly the duration of audio that is missing, otherwise the decoder will not be in the
optimal state to decode the next incoming packet. For the PLC and FEC cases, frame_size
must be a multiple of 2.5 ms.

in decode_fec int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.

Returns

Number of decoded samples or Error codes

4.2.3.3 opus_decode_float()

int opus_decode_float (

OpusDecoder ∗ st,

const unsigned char ∗ data,

opus_int32 len,

float ∗ pcm,

int frame_size,

int decode_fec)

Decode an Opus packet with floating point output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 19

Parameters

in st OpusDecoder∗: Decoder state

in data char∗: Input payload. Use a NULL pointer to indicate packet loss

in len opus_int32: Number of bytes in payload

out pcm float∗: Output signal (interleaved if 2 channels). length is
frame_size∗channels∗sizeof(float)

in frame_size Number of samples per channel of available space in pcm. If this is less than the maximum
packet duration (120ms; 5760 for 48kHz), this function will not be capable of decoding some
packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then frame_size needs
to be exactly the duration of audio that is missing, otherwise the decoder will not be in the
optimal state to decode the next incoming packet. For the PLC and FEC cases, frame_size
must be a multiple of 2.5 ms.

in decode_fec int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available the frame is decoded as if it were lost.

Returns

Number of decoded samples per channel or Error codes

4.2.3.4 opus_decoder_create()

OpusDecoder ∗ opus_decoder_create (

opus_int32 Fs,

int channels,

int ∗ error)

Allocates and initializes a decoder state.

Parameters

in Fs opus_int32: Sample rate to decode at (Hz). This must be one of 8000, 12000, 16000,
24000, or 48000.

in channels int: Number of channels (1 or 2) to decode

out error int∗: OPUS_OK Success or Error codes

Internally Opus stores data at 48000 Hz, so that should be the default value for Fs. However, the decoder can efficiently
decode to buffers at 8, 12, 16, and 24 kHz so if for some reason the caller cannot use data at the full sample rate, or
knows the compressed data doesn't use the full frequency range, it can request decoding at a reduced rate. Likewise,
the decoder is capable of filling in either mono or interleaved stereo pcm buffers, at the caller's request.

4.2.3.5 opus_decoder_ctl()

int opus_decoder_ctl (

OpusDecoder ∗ st,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

20 Topic Documentation

int request,

...)

Perform a CTL function on an Opus decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

st OpusDecoder∗: Decoder state.

request This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs or
Decoder related CTLs.

See also

Generic CTLs

Decoder related CTLs

4.2.3.6 opus_decoder_destroy()

void opus_decoder_destroy (

OpusDecoder ∗ st)

Frees an OpusDecoder allocated by opus_decoder_create().

Parameters

in st OpusDecoder∗: State to be freed.

4.2.3.7 opus_decoder_dred_decode()

int opus_decoder_dred_decode (

OpusDecoder ∗ st,

const OpusDRED ∗ dred,

opus_int32 dred_offset,

opus_int16 ∗ pcm,

opus_int32 frame_size)

Decode audio from an Opus DRED packet with 16-bit output.

Parameters

in st OpusDecoder∗: Decoder state

in dred OpusDRED∗: DRED state

in dred_offset opus_int32: position of the redundancy to decode (in samples before the beginning of
the real audio data in the packet).

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 21

Parameters

out pcm opus_int16∗: Output signal (interleaved if 2 channels). length is
frame_size∗channels∗sizeof(opus_int16)

in frame_size Number of samples per channel to decode in pcm. frame_size must be a multiple of 2.5 ms.

Returns

Number of decoded samples or Error codes

4.2.3.8 opus_decoder_dred_decode24()

int opus_decoder_dred_decode24 (

OpusDecoder ∗ st,

const OpusDRED ∗ dred,

opus_int32 dred_offset,

opus_int32 ∗ pcm,

opus_int32 frame_size)

Decode audio from an Opus DRED packet with 24-bit output.

Parameters

in st OpusDecoder∗: Decoder state

in dred OpusDRED∗: DRED state

in dred_offset opus_int32: position of the redundancy to decode (in samples before the beginning of
the real audio data in the packet).

out pcm opus_int32∗: Output signal (interleaved if 2 channels). length is
frame_size∗channels∗sizeof(opus_int16)

in frame_size Number of samples per channel to decode in pcm. frame_size must be a multiple of 2.5 ms.

Returns

Number of decoded samples or Error codes

4.2.3.9 opus_decoder_dred_decode_float()

int opus_decoder_dred_decode_float (

OpusDecoder ∗ st,

const OpusDRED ∗ dred,

opus_int32 dred_offset,

float ∗ pcm,

opus_int32 frame_size)

Decode audio from an Opus DRED packet with floating point output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

22 Topic Documentation

Parameters

in st OpusDecoder∗: Decoder state

in dred OpusDRED∗: DRED state

in dred_offset opus_int32: position of the redundancy to decode (in samples before the beginning of
the real audio data in the packet).

out pcm float∗: Output signal (interleaved if 2 channels). length is
frame_size∗channels∗sizeof(float)

in frame_size Number of samples per channel to decode in pcm. frame_size must be a multiple of 2.5 ms.

Returns

Number of decoded samples or Error codes

4.2.3.10 opus_decoder_get_nb_samples()

int opus_decoder_get_nb_samples (

const OpusDecoder ∗ dec,

const unsigned char packet[],

opus_int32 len)

Gets the number of samples of an Opus packet.

Parameters

in dec OpusDecoder∗: Decoder state

in packet char∗: Opus packet

in len opus_int32: Length of packet

Returns

Number of samples

Return values

OPUS_BAD_ARG Insufficient data was passed to the function

OPUS_INVALID_PACKET The compressed data passed is corrupted or of an unsupported type

4.2.3.11 opus_decoder_get_size()

int opus_decoder_get_size (

int channels)

Gets the size of an OpusDecoder structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 23

Parameters

in channels int: Number of channels. This must be 1 or 2.

Returns

The size in bytes.

4.2.3.12 opus_decoder_init()

int opus_decoder_init (

OpusDecoder ∗ st,

opus_int32 Fs,

int channels)

Initializes a previously allocated decoder state.

The state must be at least the size returned by opus_decoder_get_size(). This is intended for applications which use
their own allocator instead of malloc.

See also

opus_decoder_create,opus_decoder_get_size To reset a previously initialized state, use the OPUS_RESET_STATE
CTL.

Parameters

in st OpusDecoder∗: Decoder state.

in Fs opus_int32: Sampling rate to decode to (Hz). This must be one of 8000, 12000, 16000,
24000, or 48000.

in channels int: Number of channels (1 or 2) to decode

Return values

OPUS_OK Success or Error codes

4.2.3.13 opus_dred_alloc()

OpusDRED ∗ opus_dred_alloc (

int ∗ error)

Allocates and initializes a DRED state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

24 Topic Documentation

Parameters

out error int∗: OPUS_OK Success or Error codes

4.2.3.14 opus_dred_decoder_create()

OpusDREDDecoder ∗ opus_dred_decoder_create (

int ∗ error)

Allocates and initializes an OpusDREDDecoder state.

Parameters

out error int∗: OPUS_OK Success or Error codes

4.2.3.15 opus_dred_decoder_ctl()

int opus_dred_decoder_ctl (

OpusDREDDecoder ∗ dred_dec,

int request,

...)

Perform a CTL function on an Opus DRED decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

dred_dec OpusDREDDecoder∗: DRED Decoder state.

request This and all remaining parameters should be replaced by one of the convenience macros in
Generic CTLs or Decoder related CTLs.

See also

Generic CTLs

Decoder related CTLs

4.2.3.16 opus_dred_decoder_destroy()

void opus_dred_decoder_destroy (

OpusDREDDecoder ∗ dec)

Frees an OpusDREDDecoder allocated by opus_dred_decoder_create().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 25

Parameters

in dec OpusDREDDecoder∗: State to be freed.

4.2.3.17 opus_dred_decoder_get_size()

int opus_dred_decoder_get_size (

void)

Gets the size of an OpusDREDDecoder structure.

Returns

The size in bytes.

4.2.3.18 opus_dred_decoder_init()

int opus_dred_decoder_init (

OpusDREDDecoder ∗ dec)

Initializes an OpusDREDDecoder state.

Parameters

in dec OpusDREDDecoder∗: State to be initialized.

4.2.3.19 opus_dred_free()

void opus_dred_free (

OpusDRED ∗ dec)

Frees an OpusDRED allocated by opus_dred_create().

Parameters

in dec OpusDRED∗: State to be freed.

4.2.3.20 opus_dred_get_size()

int opus_dred_get_size (

void)

Gets the size of an OpusDRED structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

26 Topic Documentation

Returns

The size in bytes.

4.2.3.21 opus_dred_parse()

int opus_dred_parse (

OpusDREDDecoder ∗ dred_dec,

OpusDRED ∗ dred,

const unsigned char ∗ data,

opus_int32 len,

opus_int32 max_dred_samples,

opus_int32 sampling_rate,

int ∗ dred_end,

int defer_processing)

Decode an Opus DRED packet.

Parameters

in dred_dec OpusDRED∗: DRED Decoder state

in dred OpusDRED∗: DRED state

in data char∗: Input payload

in len opus_int32: Number of bytes in payload

in max_dred_samples opus_int32: Maximum number of DRED samples that may be needed (if
available in the packet).

in sampling_rate opus_int32: Sampling rate used for max_dred_samples argument. Needs not
match the actual sampling rate of the decoder.

out dred_end opus_int32∗: Number of non-encoded (silence) samples between the DRED
timestamp and the last DRED sample.

in defer_processing int: Flag (0 or 1). If set to one, the CPU-intensive part of the DRED decoding is
deferred until opus_dred_process() is called.

Returns

Offset (positive) of the first decoded DRED samples, zero if no DRED is present, or Error codes

4.2.3.22 opus_dred_process()

int opus_dred_process (

OpusDREDDecoder ∗ dred_dec,

const OpusDRED ∗ src,

OpusDRED ∗ dst)

Finish decoding an Opus DRED packet.

The function only needs to be called if opus_dred_parse() was called with defer_processing=1. The source and desti-
nation will often be the same DRED state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 27

Parameters

in dred_dec OpusDRED∗: DRED Decoder state

in src OpusDRED∗: Source DRED state to start the processing from.

out dst OpusDRED∗: Destination DRED state to store the updated state after processing.

Returns

Error codes

4.2.3.23 opus_packet_get_bandwidth()

int opus_packet_get_bandwidth (

const unsigned char ∗ data)

Gets the bandwidth of an Opus packet.

Parameters

in data char∗: Opus packet

Return values

OPUS_BANDWIDTH_NARROWBAND Narrowband (4kHz bandpass)

OPUS_BANDWIDTH_MEDIUMBAND Mediumband (6kHz bandpass)

OPUS_BANDWIDTH_WIDEBAND Wideband (8kHz bandpass)

OPUS_BANDWIDTH_SUPERWIDEBAND Superwideband (12kHz bandpass)

OPUS_BANDWIDTH_FULLBAND Fullband (20kHz bandpass)

OPUS_INVALID_PACKET The compressed data passed is corrupted or of an unsupported type

4.2.3.24 opus_packet_get_nb_channels()

int opus_packet_get_nb_channels (

const unsigned char ∗ data)

Gets the number of channels from an Opus packet.

Parameters

in data char∗: Opus packet

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

28 Topic Documentation

Returns

Number of channels

Return values

OPUS_INVALID_PACKET The compressed data passed is corrupted or of an unsupported type

4.2.3.25 opus_packet_get_nb_frames()

int opus_packet_get_nb_frames (

const unsigned char packet[],

opus_int32 len)

Gets the number of frames in an Opus packet.

Parameters

in packet char∗: Opus packet

in len opus_int32: Length of packet

Returns

Number of frames

Return values

OPUS_BAD_ARG Insufficient data was passed to the function

OPUS_INVALID_PACKET The compressed data passed is corrupted or of an unsupported type

4.2.3.26 opus_packet_get_nb_samples()

int opus_packet_get_nb_samples (

const unsigned char packet[],

opus_int32 len,

opus_int32 Fs)

Gets the number of samples of an Opus packet.

Parameters

in packet char∗: Opus packet

in len opus_int32: Length of packet

in Fs opus_int32: Sampling rate in Hz. This must be a multiple of 400, or inaccurate results will be
returned.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.2 Opus Decoder 29

Returns

Number of samples

Return values

OPUS_BAD_ARG Insufficient data was passed to the function

OPUS_INVALID_PACKET The compressed data passed is corrupted or of an unsupported type

4.2.3.27 opus_packet_get_samples_per_frame()

int opus_packet_get_samples_per_frame (

const unsigned char ∗ data,

opus_int32 Fs)

Gets the number of samples per frame from an Opus packet.

Parameters

in data char∗: Opus packet. This must contain at least one byte of data.

in Fs opus_int32: Sampling rate in Hz. This must be a multiple of 400, or inaccurate results will be
returned.

Returns

Number of samples per frame.

4.2.3.28 opus_packet_has_lbrr()

int opus_packet_has_lbrr (

const unsigned char packet[],

opus_int32 len)

Checks whether an Opus packet has LBRR.

Parameters

in packet char∗: Opus packet

in len opus_int32: Length of packet

Returns

1 is LBRR is present, 0 otherwise

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

30 Topic Documentation

Return values

OPUS_INVALID_PACKET The compressed data passed is corrupted or of an unsupported type

4.2.3.29 opus_packet_parse()

int opus_packet_parse (

const unsigned char ∗ data,

opus_int32 len,

unsigned char ∗ out_toc,

const unsigned char ∗ frames[48],

opus_int16 size[48],

int ∗ payload_offset)

Parse an opus packet into one or more frames.

Opus_decode will perform this operation internally so most applications do not need to use this function. This function
does not copy the frames, the returned pointers are pointers into the input packet.

Parameters

in data char∗: Opus packet to be parsed

in len opus_int32: size of data

out out_toc char∗: TOC pointer

out frames char∗[48] encapsulated frames

out size opus_int16[48] sizes of the encapsulated frames

out payload_offset int∗: returns the position of the payload within the packet (in bytes)

Returns

number of frames

4.2.3.30 opus_pcm_soft_clip()

void opus_pcm_soft_clip (

float ∗ pcm,

int frame_size,

int channels,

float ∗ softclip_mem)

Applies soft-clipping to bring a float signal within the [-1,1] range.

If the signal is already in that range, nothing is done. If there are values outside of [-1,1], then the signal is clipped as
smoothly as possible to both fit in the range and avoid creating excessive distortion in the process.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 31

Parameters

in,out pcm float∗: Input PCM and modified PCM

in frame_size int Number of samples per channel to process

in channels int: Number of channels
in,out softclip_mem float∗: State memory for the soft clipping process (one float per channel, initialized

to zero)

4.3 Repacketizer

The repacketizer can be used to merge multiple Opus packets into a single packet or alternatively to split Opus packets
that have previously been merged.

Typedefs

• typedef struct OpusRepacketizer OpusRepacketizer

Functions

• int opus_repacketizer_get_size (void)

Gets the size of an OpusRepacketizer structure.

• OpusRepacketizer ∗ opus_repacketizer_init (OpusRepacketizer ∗rp)

(Re)initializes a previously allocated repacketizer state.

• OpusRepacketizer ∗ opus_repacketizer_create (void)

Allocates memory and initializes the new repacketizer with opus_repacketizer_init().

• void opus_repacketizer_destroy (OpusRepacketizer ∗rp)

Frees an OpusRepacketizer allocated by opus_repacketizer_create().

• int opus_repacketizer_cat (OpusRepacketizer ∗rp, const unsigned char ∗data, opus_int32 len)

Add a packet to the current repacketizer state.

• opus_int32 opus_repacketizer_out_range (OpusRepacketizer ∗rp, int begin, int end, unsigned char ∗data,
opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().

• int opus_repacketizer_get_nb_frames (OpusRepacketizer ∗rp)

Return the total number of frames contained in packet data submitted to the repacketizer state so far via
opus_repacketizer_cat() since the last call to opus_repacketizer_init() or opus_repacketizer_create().

• opus_int32 opus_repacketizer_out (OpusRepacketizer ∗rp, unsigned char ∗data, opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().

• int opus_packet_pad (unsigned char ∗data, opus_int32 len, opus_int32 new_len)

Pads a given Opus packet to a larger size (possibly changing the TOC sequence).

• opus_int32 opus_packet_unpad (unsigned char ∗data, opus_int32 len)

Remove all padding from a given Opus packet and rewrite the TOC sequence to minimize space usage.

• int opus_multistream_packet_pad (unsigned char ∗data, opus_int32 len, opus_int32 new_len, int nb_streams)

Pads a given Opus multi-stream packet to a larger size (possibly changing the TOC sequence).

• opus_int32 opus_multistream_packet_unpad (unsigned char ∗data, opus_int32 len, int nb_streams)

Remove all padding from a given Opus multi-stream packet and rewrite the TOC sequence to minimize space usage.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

32 Topic Documentation

4.3.1 Detailed Description

The repacketizer can be used to merge multiple Opus packets into a single packet or alternatively to split Opus packets
that have previously been merged.

Splitting valid Opus packets is always guaranteed to succeed, whereas merging valid packets only succeeds if all frames
have the same mode, bandwidth, and frame size, and when the total duration of the merged packet is no more than 120
ms. The 120 ms limit comes from the specification and limits decoder memory requirements at a point where framing
overhead becomes negligible.

The repacketizer currently only operates on elementary Opus streams. It will not manipulate multistream packets suc-
cessfully, except in the degenerate case where they consist of data from a single stream.

The repacketizing process starts with creating a repacketizer state, either by calling opus_repacketizer_create() or by
allocating the memory yourself, e.g.,
OpusRepacketizer *rp;
rp = (OpusRepacketizer*)malloc(opus_repacketizer_get_size());
if (rp != NULL)

opus_repacketizer_init(rp);

Then the application should submit packets with opus_repacketizer_cat(), extract new packets with opus_repacketizer_out()
or opus_repacketizer_out_range(), and then reset the state for the next set of input packets via opus_repacketizer_init().

For example, to split a sequence of packets into individual frames:
unsigned char *data;
int len;
while (get_next_packet(&data, &len))
{

unsigned char out[1276];
opus_int32 out_len;
int nb_frames;
int err;
int i;
err = opus_repacketizer_cat(rp, data, len);
if (err != OPUS_OK)
{
release_packet(data);
return err;

}
nb_frames = opus_repacketizer_get_nb_frames(rp);
for (i = 0; i < nb_frames; i++)
{
out_len = opus_repacketizer_out_range(rp, i, i+1, out, sizeof(out));
if (out_len < 0)
{

release_packet(data);
return (int)out_len;

}
output_next_packet(out, out_len);

}
opus_repacketizer_init(rp);
release_packet(data);

}

Alternatively, to combine a sequence of frames into packets that each contain up to TARGET_DURATION_MS millisec-
onds of data:
// The maximum number of packets with duration TARGET_DURATION_MS occurs
// when the frame size is 2.5 ms, for a total of (TARGET_DURATION_MS*2/5)
// packets.
unsigned char *data[(TARGET_DURATION_MS*2/5)+1];
opus_int32 len[(TARGET_DURATION_MS*2/5)+1];
int nb_packets;
unsigned char out[1277*(TARGET_DURATION_MS*2/2)];
opus_int32 out_len;
int prev_toc;
nb_packets = 0;
while (get_next_packet(data+nb_packets, len+nb_packets))
{

int nb_frames;

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 33

int err;
nb_frames = opus_packet_get_nb_frames(data[nb_packets], len[nb_packets]);
if (nb_frames < 1)
{
release_packets(data, nb_packets+1);
return nb_frames;

}
nb_frames += opus_repacketizer_get_nb_frames(rp);
// If adding the next packet would exceed our target, or it has an
// incompatible TOC sequence, output the packets we already have before
// submitting it.
// N.B., The nb_packets > 0 check ensures we’ve submitted at least one
// packet since the last call to opus_repacketizer_init(). Otherwise a
// single packet longer than TARGET_DURATION_MS would cause us to try to
// output an (invalid) empty packet. It also ensures that prev_toc has
// been set to a valid value. Additionally, len[nb_packets] > 0 is
// guaranteed by the call to opus_packet_get_nb_frames() above, so the
// reference to data[nb_packets][0] should be valid.
if (nb_packets > 0 && (

((prev_toc & 0xFC) != (data[nb_packets][0] & 0xFC)) ||
opus_packet_get_samples_per_frame(data[nb_packets], 48000)*nb_frames >
TARGET_DURATION_MS*48))

{
out_len = opus_repacketizer_out(rp, out, sizeof(out));
if (out_len < 0)
{

release_packets(data, nb_packets+1);
return (int)out_len;

}
output_next_packet(out, out_len);
opus_repacketizer_init(rp);
release_packets(data, nb_packets);
data[0] = data[nb_packets];
len[0] = len[nb_packets];
nb_packets = 0;

}
err = opus_repacketizer_cat(rp, data[nb_packets], len[nb_packets]);
if (err != OPUS_OK)
{
release_packets(data, nb_packets+1);
return err;

}
prev_toc = data[nb_packets][0];
nb_packets++;

}
// Output the final, partial packet.
if (nb_packets > 0)
{

out_len = opus_repacketizer_out(rp, out, sizeof(out));
release_packets(data, nb_packets);
if (out_len < 0)
return (int)out_len;

output_next_packet(out, out_len);
}

An alternate way of merging packets is to simply call opus_repacketizer_cat() unconditionally until it fails. At that point,
the merged packet can be obtained with opus_repacketizer_out() and the input packet for which opus_repacketizer_cat()
needs to be re-added to a newly reinitialized repacketizer state.

4.3.2 Typedef Documentation

4.3.2.1 OpusRepacketizer

typedef struct OpusRepacketizer OpusRepacketizer

4.3.3 Function Documentation

4.3.3.1 opus_multistream_packet_pad()

int opus_multistream_packet_pad (

unsigned char ∗ data,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

34 Topic Documentation

opus_int32 len,

opus_int32 new_len,

int nb_streams)

Pads a given Opus multi-stream packet to a larger size (possibly changing the TOC sequence).

Parameters

in,out data const unsigned char∗: The buffer containing the packet to pad.

len opus_int32: The size of the packet. This must be at least 1.

new_len opus_int32: The desired size of the packet after padding. This must be at least 1.

nb_streams opus_int32: The number of streams (not channels) in the packet. This must be at
least as large as len.

Returns

an error code

Return values

OPUS_OK on success.
OPUS_BAD_ARG len was less than 1.

OPUS_INVALID_PACKET data did not contain a valid Opus packet.

4.3.3.2 opus_multistream_packet_unpad()

opus_int32 opus_multistream_packet_unpad (

unsigned char ∗ data,

opus_int32 len,

int nb_streams)

Remove all padding from a given Opus multi-stream packet and rewrite the TOC sequence to minimize space usage.

Parameters

in,out data const unsigned char∗: The buffer containing the packet to strip.

len opus_int32: The size of the packet. This must be at least 1.

nb_streams opus_int32: The number of streams (not channels) in the packet. This must be at
least 1.

Returns

The new size of the output packet on success, or an error code on failure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 35

Return values

OPUS_BAD_ARG len was less than 1 or new_len was less than len.
OPUS_INVALID_PACKET data did not contain a valid Opus packet.

4.3.3.3 opus_packet_pad()

int opus_packet_pad (

unsigned char ∗ data,

opus_int32 len,

opus_int32 new_len)

Pads a given Opus packet to a larger size (possibly changing the TOC sequence).

Parameters

in,out data const unsigned char∗: The buffer containing the packet to pad.

len opus_int32: The size of the packet. This must be at least 1.

new_len opus_int32: The desired size of the packet after padding. This must be at least as
large as len.

Returns

an error code

Return values

OPUS_OK on success.
OPUS_BAD_ARG len was less than 1 or new_len was less than len.

OPUS_INVALID_PACKET data did not contain a valid Opus packet.

4.3.3.4 opus_packet_unpad()

opus_int32 opus_packet_unpad (

unsigned char ∗ data,

opus_int32 len)

Remove all padding from a given Opus packet and rewrite the TOC sequence to minimize space usage.

Parameters

in,out data const unsigned char∗: The buffer containing the packet to strip.

len opus_int32: The size of the packet. This must be at least 1.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

36 Topic Documentation

Returns

The new size of the output packet on success, or an error code on failure.

Return values

OPUS_BAD_ARG len was less than 1.
OPUS_INVALID_PACKET data did not contain a valid Opus packet.

4.3.3.5 opus_repacketizer_cat()

int opus_repacketizer_cat (

OpusRepacketizer ∗ rp,

const unsigned char ∗ data,

opus_int32 len)

Add a packet to the current repacketizer state.

This packet must match the configuration of any packets already submitted for repacketization since the last call to
opus_repacketizer_init(). This means that it must have the same coding mode, audio bandwidth, frame size, and channel
count. This can be checked in advance by examining the top 6 bits of the first byte of the packet, and ensuring they
match the top 6 bits of the first byte of any previously submitted packet. The total duration of audio in the repacketizer
state also must not exceed 120 ms, the maximum duration of a single packet, after adding this packet.

The contents of the current repacketizer state can be extracted into new packets using opus_repacketizer_out() or
opus_repacketizer_out_range().

In order to add a packet with a different configuration or to add more audio beyond 120 ms, you must clear the repacke-
tizer state by calling opus_repacketizer_init(). If a packet is too large to add to the current repacketizer state, no part of it
is added, even if it contains multiple frames, some of which might fit. If you wish to be able to add parts of such packets,
you should first use another repacketizer to split the packet into pieces and add them individually.

See also

opus_repacketizer_out_range

opus_repacketizer_out

opus_repacketizer_init

Parameters

rp OpusRepacketizer∗: The repacketizer state to which to add the packet.

in data const unsigned char∗: The packet data. The application must ensure this pointer remains
valid until the next call to opus_repacketizer_init() or opus_repacketizer_destroy().

len opus_int32: The number of bytes in the packet data.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 37

Returns

An error code indicating whether or not the operation succeeded.

Return values

OPUS_OK The packet's contents have been added to the repacketizer state.

OPUS_INVALID_PACKET The packet did not have a valid TOC sequence, the packet's TOC sequence was not
compatible with previously submitted packets (because the coding mode, audio
bandwidth, frame size, or channel count did not match), or adding this packet would
increase the total amount of audio stored in the repacketizer state to more than 120
ms.

4.3.3.6 opus_repacketizer_create()

OpusRepacketizer ∗ opus_repacketizer_create (

void)

Allocates memory and initializes the new repacketizer with opus_repacketizer_init().

4.3.3.7 opus_repacketizer_destroy()

void opus_repacketizer_destroy (

OpusRepacketizer ∗ rp)

Frees an OpusRepacketizer allocated by opus_repacketizer_create().

Parameters

in rp OpusRepacketizer∗: State to be freed.

4.3.3.8 opus_repacketizer_get_nb_frames()

int opus_repacketizer_get_nb_frames (

OpusRepacketizer ∗ rp)

Return the total number of frames contained in packet data submitted to the repacketizer state so far via
opus_repacketizer_cat() since the last call to opus_repacketizer_init() or opus_repacketizer_create().

This defines the valid range of packets that can be extracted with opus_repacketizer_out_range() or opus_repacketizer_out().

Parameters

rp OpusRepacketizer∗: The repacketizer state containing the frames.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

38 Topic Documentation

Returns

The total number of frames contained in the packet data submitted to the repacketizer state.

4.3.3.9 opus_repacketizer_get_size()

int opus_repacketizer_get_size (

void)

Gets the size of an OpusRepacketizer structure.

Returns

The size in bytes.

4.3.3.10 opus_repacketizer_init()

OpusRepacketizer ∗ opus_repacketizer_init (

OpusRepacketizer ∗ rp)

(Re)initializes a previously allocated repacketizer state.

The state must be at least the size returned by opus_repacketizer_get_size(). This can be used for applications which
use their own allocator instead of malloc(). It must also be called to reset the queue of packets waiting to be repacketized,
which is necessary if the maximum packet duration of 120 ms is reached or if you wish to submit packets with a different
Opus configuration (coding mode, audio bandwidth, frame size, or channel count). Failure to do so will prevent a new
packet from being added with opus_repacketizer_cat().

See also

opus_repacketizer_create

opus_repacketizer_get_size

opus_repacketizer_cat

Parameters

rp OpusRepacketizer∗: The repacketizer state to (re)initialize.

Returns

A pointer to the same repacketizer state that was passed in.

4.3.3.11 opus_repacketizer_out()

opus_int32 opus_repacketizer_out (

OpusRepacketizer ∗ rp,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.3 Repacketizer 39

unsigned char ∗ data,

opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().

This is a convenience routine that returns all the data submitted so far in a single packet. It is equivalent to calling
opus_repacketizer_out_range(rp, 0, opus_repacketizer_get_nb_frames(rp),

data, maxlen)

Parameters

rp OpusRepacketizer∗: The repacketizer state from which to construct the new packet.

out data const unsigned char∗: The buffer in which to store the output packet.

maxlen opus_int32: The maximum number of bytes to store in the output buffer. In order to
guarantee success, this should be at least
1277∗opus_repacketizer_get_nb_frames(rp). However,
1∗opus_repacketizer_get_nb_frames(rp) plus the size of all packet data
submitted to the repacketizer since the last call to opus_repacketizer_init() or
opus_repacketizer_create() is also sufficient, and possibly much smaller.

Returns

The total size of the output packet on success, or an error code on failure.

Return values

OPUS_BUFFER_TOO_SMALL maxlen was insufficient to contain the complete output packet.

4.3.3.12 opus_repacketizer_out_range()

opus_int32 opus_repacketizer_out_range (

OpusRepacketizer ∗ rp,

int begin,

int end,

unsigned char ∗ data,

opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().

Parameters

rp OpusRepacketizer∗: The repacketizer state from which to construct the new packet.

begin int: The index of the first frame in the current repacketizer state to include in the output.

end int: One past the index of the last frame in the current repacketizer state to include in the
output.

out data const unsigned char∗: The buffer in which to store the output packet.

maxlen opus_int32: The maximum number of bytes to store in the output buffer. In order to
guarantee success, this should be at least 1276 for a single frame, or for multiple frames,
1277∗(end-begin). However, 1∗(end-begin) plus the size of all packet data submitted
to the repacketizer since the last call to opus_repacketizer_init() or opus_repacketizer_create()
is also sufficient, and possibly much smaller.Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

40 Topic Documentation

Returns

The total size of the output packet on success, or an error code on failure.

Return values

OPUS_BAD_ARG [begin,end) was an invalid range of frames (begin < 0, begin >= end, or end >
opus_repacketizer_get_nb_frames()).

OPUS_BUFFER_TOO_SMALL maxlen was insufficient to contain the complete output packet.

4.4 Error codes

Macros

• #define OPUS_OK

No error.

• #define OPUS_BAD_ARG

One or more invalid/out of range arguments.

• #define OPUS_BUFFER_TOO_SMALL

Not enough bytes allocated in the buffer.

• #define OPUS_INTERNAL_ERROR

An internal error was detected.

• #define OPUS_INVALID_PACKET

The compressed data passed is corrupted.

• #define OPUS_UNIMPLEMENTED

Invalid/unsupported request number.

• #define OPUS_INVALID_STATE

An encoder or decoder structure is invalid or already freed.

• #define OPUS_ALLOC_FAIL

Memory allocation has failed.

4.4.1 Detailed Description

4.4.2 Macro Definition Documentation

4.4.2.1 OPUS_ALLOC_FAIL

#define OPUS_ALLOC_FAIL

Memory allocation has failed.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.4 Error codes 41

4.4.2.2 OPUS_BAD_ARG

#define OPUS_BAD_ARG

One or more invalid/out of range arguments.

4.4.2.3 OPUS_BUFFER_TOO_SMALL

#define OPUS_BUFFER_TOO_SMALL

Not enough bytes allocated in the buffer.

4.4.2.4 OPUS_INTERNAL_ERROR

#define OPUS_INTERNAL_ERROR

An internal error was detected.

4.4.2.5 OPUS_INVALID_PACKET

#define OPUS_INVALID_PACKET

The compressed data passed is corrupted.

4.4.2.6 OPUS_INVALID_STATE

#define OPUS_INVALID_STATE

An encoder or decoder structure is invalid or already freed.

4.4.2.7 OPUS_OK

#define OPUS_OK

No error.

4.4.2.8 OPUS_UNIMPLEMENTED

#define OPUS_UNIMPLEMENTED

Invalid/unsupported request number.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

42 Topic Documentation

4.5 Pre-defined values for CTL interface

Macros

• #define OPUS_AUTO

Auto/default setting.

• #define OPUS_BITRATE_MAX

Maximum bitrate.

• #define OPUS_APPLICATION_VOIP

Best for most VoIP/videoconference applications where listening quality and intelligibility matter most.

• #define OPUS_APPLICATION_AUDIO

Best for broadcast/high-fidelity application where the decoded audio should be as close as possible to the input.

• #define OPUS_APPLICATION_RESTRICTED_LOWDELAY

Only use when lowest-achievable latency is what matters most.

• #define OPUS_APPLICATION_RESTRICTED_SILK 2052

Experts only: forces SILK encoding; don't allocate CELT state at all.

• #define OPUS_APPLICATION_RESTRICTED_CELT 2053

Experts only: forces CELT encoding; don't allocate SILK state at all.

• #define OPUS_SIGNAL_VOICE 3001

Signal being encoded is voice.

• #define OPUS_SIGNAL_MUSIC 3002

Signal being encoded is music.

• #define OPUS_BANDWIDTH_NARROWBAND

4 kHz bandpass

• #define OPUS_BANDWIDTH_MEDIUMBAND

6 kHz bandpass

• #define OPUS_BANDWIDTH_WIDEBAND

8 kHz bandpass

• #define OPUS_BANDWIDTH_SUPERWIDEBAND

12 kHz bandpass

• #define OPUS_BANDWIDTH_FULLBAND

20 kHz bandpass

• #define OPUS_FRAMESIZE_ARG 5000

Select frame size from the argument (default)

• #define OPUS_FRAMESIZE_2_5_MS 5001

Use 2.5 ms frames.

• #define OPUS_FRAMESIZE_5_MS 5002

Use 5 ms frames.

• #define OPUS_FRAMESIZE_10_MS 5003

Use 10 ms frames.

• #define OPUS_FRAMESIZE_20_MS 5004

Use 20 ms frames.

• #define OPUS_FRAMESIZE_40_MS 5005

Use 40 ms frames.

• #define OPUS_FRAMESIZE_60_MS 5006

Use 60 ms frames.

• #define OPUS_FRAMESIZE_80_MS 5007

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.5 Pre-defined values for CTL interface 43

Use 80 ms frames.

• #define OPUS_FRAMESIZE_100_MS 5008

Use 100 ms frames.

• #define OPUS_FRAMESIZE_120_MS 5009

Use 120 ms frames.

4.5.1 Detailed Description

See also

Generic CTLs, Encoder related CTLs

4.5.2 Macro Definition Documentation

4.5.2.1 OPUS_APPLICATION_AUDIO

#define OPUS_APPLICATION_AUDIO

Best for broadcast/high-fidelity application where the decoded audio should be as close as possible to the input.

4.5.2.2 OPUS_APPLICATION_RESTRICTED_CELT

#define OPUS_APPLICATION_RESTRICTED_CELT 2053

Experts only: forces CELT encoding; don't allocate SILK state at all.

Disables OPUS_SET_APPLICATION.

4.5.2.3 OPUS_APPLICATION_RESTRICTED_LOWDELAY

#define OPUS_APPLICATION_RESTRICTED_LOWDELAY

Only use when lowest-achievable latency is what matters most.

Voice-optimized modes cannot be used.

4.5.2.4 OPUS_APPLICATION_RESTRICTED_SILK

#define OPUS_APPLICATION_RESTRICTED_SILK 2052

Experts only: forces SILK encoding; don't allocate CELT state at all.

Disables OPUS_SET_APPLICATION.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

44 Topic Documentation

4.5.2.5 OPUS_APPLICATION_VOIP

#define OPUS_APPLICATION_VOIP

Best for most VoIP/videoconference applications where listening quality and intelligibility matter most.

4.5.2.6 OPUS_AUTO

#define OPUS_AUTO

Auto/default setting.

4.5.2.7 OPUS_BANDWIDTH_FULLBAND

#define OPUS_BANDWIDTH_FULLBAND

20 kHz bandpass

4.5.2.8 OPUS_BANDWIDTH_MEDIUMBAND

#define OPUS_BANDWIDTH_MEDIUMBAND

6 kHz bandpass

4.5.2.9 OPUS_BANDWIDTH_NARROWBAND

#define OPUS_BANDWIDTH_NARROWBAND

4 kHz bandpass

4.5.2.10 OPUS_BANDWIDTH_SUPERWIDEBAND

#define OPUS_BANDWIDTH_SUPERWIDEBAND

12 kHz bandpass

4.5.2.11 OPUS_BANDWIDTH_WIDEBAND

#define OPUS_BANDWIDTH_WIDEBAND

8 kHz bandpass

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.5 Pre-defined values for CTL interface 45

4.5.2.12 OPUS_BITRATE_MAX

#define OPUS_BITRATE_MAX

Maximum bitrate.

4.5.2.13 OPUS_FRAMESIZE_100_MS

#define OPUS_FRAMESIZE_100_MS 5008

Use 100 ms frames.

4.5.2.14 OPUS_FRAMESIZE_10_MS

#define OPUS_FRAMESIZE_10_MS 5003

Use 10 ms frames.

4.5.2.15 OPUS_FRAMESIZE_120_MS

#define OPUS_FRAMESIZE_120_MS 5009

Use 120 ms frames.

4.5.2.16 OPUS_FRAMESIZE_20_MS

#define OPUS_FRAMESIZE_20_MS 5004

Use 20 ms frames.

4.5.2.17 OPUS_FRAMESIZE_2_5_MS

#define OPUS_FRAMESIZE_2_5_MS 5001

Use 2.5 ms frames.

4.5.2.18 OPUS_FRAMESIZE_40_MS

#define OPUS_FRAMESIZE_40_MS 5005

Use 40 ms frames.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

46 Topic Documentation

4.5.2.19 OPUS_FRAMESIZE_5_MS

#define OPUS_FRAMESIZE_5_MS 5002

Use 5 ms frames.

4.5.2.20 OPUS_FRAMESIZE_60_MS

#define OPUS_FRAMESIZE_60_MS 5006

Use 60 ms frames.

4.5.2.21 OPUS_FRAMESIZE_80_MS

#define OPUS_FRAMESIZE_80_MS 5007

Use 80 ms frames.

4.5.2.22 OPUS_FRAMESIZE_ARG

#define OPUS_FRAMESIZE_ARG 5000

Select frame size from the argument (default)

4.5.2.23 OPUS_SIGNAL_MUSIC

#define OPUS_SIGNAL_MUSIC 3002

Signal being encoded is music.

4.5.2.24 OPUS_SIGNAL_VOICE

#define OPUS_SIGNAL_VOICE 3001

Signal being encoded is voice.

4.6 Encoder related CTLs

These are convenience macros for use with the opus_encode_ctl interface.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 47

Macros

• #define OPUS_SET_COMPLEXITY(x)

Configures the encoder's computational complexity.

• #define OPUS_GET_COMPLEXITY(x)

Gets the encoder's complexity configuration.

• #define OPUS_SET_BITRATE(x)

Configures the bitrate in the encoder.

• #define OPUS_GET_BITRATE(x)

Gets the encoder's bitrate configuration.

• #define OPUS_SET_VBR(x)

Enables or disables variable bitrate (VBR) in the encoder.

• #define OPUS_GET_VBR(x)

Determine if variable bitrate (VBR) is enabled in the encoder.

• #define OPUS_SET_VBR_CONSTRAINT(x)

Enables or disables constrained VBR in the encoder.

• #define OPUS_GET_VBR_CONSTRAINT(x)

Determine if constrained VBR is enabled in the encoder.

• #define OPUS_SET_FORCE_CHANNELS(x)

Configures mono/stereo forcing in the encoder.

• #define OPUS_GET_FORCE_CHANNELS(x)

Gets the encoder's forced channel configuration.

• #define OPUS_SET_MAX_BANDWIDTH(x)

Configures the maximum bandpass that the encoder will select automatically.

• #define OPUS_GET_MAX_BANDWIDTH(x)

Gets the encoder's configured maximum allowed bandpass.

• #define OPUS_SET_BANDWIDTH(x)

Sets the encoder's bandpass to a specific value.

• #define OPUS_SET_SIGNAL(x)

Configures the type of signal being encoded.

• #define OPUS_GET_SIGNAL(x)

Gets the encoder's configured signal type.

• #define OPUS_SET_APPLICATION(x)

Configures the encoder's intended application.

• #define OPUS_GET_APPLICATION(x)

Gets the encoder's configured application.

• #define OPUS_GET_LOOKAHEAD(x)

Gets the total samples of delay added by the entire codec.

• #define OPUS_SET_INBAND_FEC(x)

Configures the encoder's use of inband forward error correction (FEC).

• #define OPUS_GET_INBAND_FEC(x)

Gets encoder's configured use of inband forward error correction.

• #define OPUS_SET_PACKET_LOSS_PERC(x)

Configures the encoder's expected packet loss percentage.

• #define OPUS_GET_PACKET_LOSS_PERC(x)

Gets the encoder's configured packet loss percentage.

• #define OPUS_SET_DTX(x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

48 Topic Documentation

Configures the encoder's use of discontinuous transmission (DTX).

• #define OPUS_GET_DTX(x)

Gets encoder's configured use of discontinuous transmission.

• #define OPUS_SET_LSB_DEPTH(x)

Configures the depth of signal being encoded.

• #define OPUS_GET_LSB_DEPTH(x)

Gets the encoder's configured signal depth.

• #define OPUS_SET_EXPERT_FRAME_DURATION(x)

Configures the encoder's use of variable duration frames.

• #define OPUS_GET_EXPERT_FRAME_DURATION(x)

Gets the encoder's configured use of variable duration frames.

• #define OPUS_SET_PREDICTION_DISABLED(x)

If set to 1, disables almost all use of prediction, making frames almost completely independent.

• #define OPUS_GET_PREDICTION_DISABLED(x)

Gets the encoder's configured prediction status.

• #define OPUS_SET_DRED_DURATION(x)

If non-zero, enables Deep Redundancy (DRED) and use the specified maximum number of 10-ms redundant frames.

• #define OPUS_GET_DRED_DURATION(x)

Gets the encoder's configured Deep Redundancy (DRED) maximum number of frames.

• #define OPUS_SET_DNN_BLOB(data, len)

Provide external DNN weights from binary object (only when explicitly built without the weights)

• #define OPUS_SET_QEXT(x)

If set to 1, enables quality extension (QEXT), otherwise disables it (default).

• #define OPUS_GET_QEXT(x)

Gets the encoder's configured quality extension (QEXT).

4.6.1 Detailed Description

These are convenience macros for use with the opus_encode_ctl interface.

They are used to generate the appropriate series of arguments for that call, passing the correct type, size and so on as
expected for each particular request.

Some usage examples:
int ret;
ret = opus_encoder_ctl(enc_ctx, OPUS_SET_BANDWIDTH(OPUS_AUTO));
if (ret != OPUS_OK) return ret;

opus_int32 rate;
opus_encoder_ctl(enc_ctx, OPUS_GET_BANDWIDTH(&rate));

opus_encoder_ctl(enc_ctx, OPUS_RESET_STATE);

See also

Generic CTLs, Opus Encoder

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 49

4.6.2 Macro Definition Documentation

4.6.2.1 OPUS_GET_APPLICATION

#define OPUS_GET_APPLICATION(

x)

Gets the encoder's configured application.

See also

OPUS_SET_APPLICATION

Parameters

out x opus_int32 ∗: Returns one of the following values:

OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.

OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum possible coding delay
by disabling certain modes of operation.

4.6.2.2 OPUS_GET_BITRATE

#define OPUS_GET_BITRATE(

x)

Gets the encoder's bitrate configuration.

See also

OPUS_SET_BITRATE

Parameters

out x opus_int32 ∗: Returns the bitrate in bits per second. The default is determined based on the
number of channels and the input sampling rate.

4.6.2.3 OPUS_GET_COMPLEXITY

#define OPUS_GET_COMPLEXITY(

x)

Gets the encoder's complexity configuration.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

50 Topic Documentation

See also

OPUS_SET_COMPLEXITY

Parameters

out x opus_int32 ∗: Returns a value in the range 0-10, inclusive.

4.6.2.4 OPUS_GET_DRED_DURATION

#define OPUS_GET_DRED_DURATION(

x)

Gets the encoder's configured Deep Redundancy (DRED) maximum number of frames.

4.6.2.5 OPUS_GET_DTX

#define OPUS_GET_DTX(

x)

Gets encoder's configured use of discontinuous transmission.

See also

OPUS_SET_DTX

Parameters

out x opus_int32 ∗: Returns one of the following
values:

0 DTX disabled (default).

1 DTX enabled.

4.6.2.6 OPUS_GET_EXPERT_FRAME_DURATION

#define OPUS_GET_EXPERT_FRAME_DURATION(

x)

Gets the encoder's configured use of variable duration frames.

See also

OPUS_SET_EXPERT_FRAME_DURATION

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 51

Parameters

out x opus_int32 ∗: Returns one of the following values:

OPUS_FRAMESIZE_ARG Select frame size from the argument (default).

OPUS_FRAMESIZE_2_5_MS Use 2.5 ms frames.

OPUS_FRAMESIZE_5_MS Use 5 ms frames.

OPUS_FRAMESIZE_10_MS Use 10 ms frames.

OPUS_FRAMESIZE_20_MS Use 20 ms frames.

OPUS_FRAMESIZE_40_MS Use 40 ms frames.

OPUS_FRAMESIZE_60_MS Use 60 ms frames.

OPUS_FRAMESIZE_80_MS Use 80 ms frames.

OPUS_FRAMESIZE_100_MS Use 100 ms frames.

OPUS_FRAMESIZE_120_MS Use 120 ms frames.

4.6.2.7 OPUS_GET_FORCE_CHANNELS

#define OPUS_GET_FORCE_CHANNELS(

x)

Gets the encoder's forced channel configuration.

See also

OPUS_SET_FORCE_CHANNELS

Parameters

out x opus_int32 ∗:

OPUS_AUTO Not forced (default)

1 Forced mono

2 Forced stereo

4.6.2.8 OPUS_GET_INBAND_FEC

#define OPUS_GET_INBAND_FEC(

x)

Gets encoder's configured use of inband forward error correction.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

52 Topic Documentation

See also

OPUS_SET_INBAND_FEC

Parameters

out x opus_int32 ∗: Returns one of the following values:

0 Inband FEC disabled (default).

1 Inband FEC enabled. If the packet loss rate is sufficiently high, Opus will automatically switch to
SILK even at high rates to enable use of that FEC.

2 Inband FEC enabled, but does not necessarily switch to SILK if we have music.

4.6.2.9 OPUS_GET_LOOKAHEAD

#define OPUS_GET_LOOKAHEAD(

x)

Gets the total samples of delay added by the entire codec.

This can be queried by the encoder and then the provided number of samples can be skipped on from the start of the
decoder's output to provide time aligned input and output. From the perspective of a decoding application the real data
begins this many samples late.

The decoder contribution to this delay is identical for all decoders, but the encoder portion of the delay may vary from
implementation to implementation, version to version, or even depend on the encoder's initial configuration. Applications
needing delay compensation should call this CTL rather than hard-coding a value.

Parameters

out x opus_int32 ∗: Number of lookahead samples

4.6.2.10 OPUS_GET_LSB_DEPTH

#define OPUS_GET_LSB_DEPTH(

x)

Gets the encoder's configured signal depth.

See also

OPUS_SET_LSB_DEPTH

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 53

Parameters

out x opus_int32 ∗: Input precision in bits, between 8 and 24 (default: 24).

4.6.2.11 OPUS_GET_MAX_BANDWIDTH

#define OPUS_GET_MAX_BANDWIDTH(

x)

Gets the encoder's configured maximum allowed bandpass.

See also

OPUS_SET_MAX_BANDWIDTH

Parameters

out x opus_int32 ∗: Allowed values:

OPUS_BANDWIDTH_NARROWBAND 4 kHz passband

OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband

OPUS_BANDWIDTH_WIDEBAND 8 kHz passband

OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband

OPUS_BANDWIDTH_FULLBAND 20 kHz passband (default)

4.6.2.12 OPUS_GET_PACKET_LOSS_PERC

#define OPUS_GET_PACKET_LOSS_PERC(

x)

Gets the encoder's configured packet loss percentage.

See also

OPUS_SET_PACKET_LOSS_PERC

Parameters

out x opus_int32 ∗: Returns the configured loss percentage in the range 0-100, inclusive (default: 0).

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

54 Topic Documentation

4.6.2.13 OPUS_GET_PREDICTION_DISABLED

#define OPUS_GET_PREDICTION_DISABLED(

x)

Gets the encoder's configured prediction status.

See also

OPUS_SET_PREDICTION_DISABLED

Parameters

out x opus_int32 ∗: Returns one of the following
values:

0 Prediction enabled (default).

1 Prediction disabled.

4.6.2.14 OPUS_GET_QEXT

#define OPUS_GET_QEXT(

x)

Gets the encoder's configured quality extension (QEXT).

4.6.2.15 OPUS_GET_SIGNAL

#define OPUS_GET_SIGNAL(

x)

Gets the encoder's configured signal type.

See also

OPUS_SET_SIGNAL

Parameters

out x opus_int32 ∗: Returns one of the following values:

OPUS_AUTO (default)

OPUS_SIGNAL_VOICE Bias thresholds towards choosing LPC or Hybrid modes.

OPUS_SIGNAL_MUSIC Bias thresholds towards choosing MDCT modes.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 55

4.6.2.16 OPUS_GET_VBR

#define OPUS_GET_VBR(

x)

Determine if variable bitrate (VBR) is enabled in the encoder.

See also

OPUS_SET_VBR

OPUS_GET_VBR_CONSTRAINT

Parameters

out x opus_int32 ∗: Returns one of the following values:

0 Hard CBR.

1 VBR (default). The exact type of VBR may be retrieved via OPUS_GET_VBR_CONSTRAINT.

4.6.2.17 OPUS_GET_VBR_CONSTRAINT

#define OPUS_GET_VBR_CONSTRAINT(

x)

Determine if constrained VBR is enabled in the encoder.

See also

OPUS_SET_VBR_CONSTRAINT

OPUS_GET_VBR

Parameters

out x opus_int32 ∗: Returns one of the following
values:

0 Unconstrained VBR.

1 Constrained VBR (default).

4.6.2.18 OPUS_SET_APPLICATION

#define OPUS_SET_APPLICATION(

x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

56 Topic Documentation

Configures the encoder's intended application.

The initial value is a mandatory argument to the encoder_create function.

See also

OPUS_GET_APPLICATION

Parameters

in x opus_int32: Returns one of the following values:

OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.

OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum possible coding delay by
disabling certain modes of operation.

4.6.2.19 OPUS_SET_BANDWIDTH

#define OPUS_SET_BANDWIDTH(

x)

Sets the encoder's bandpass to a specific value.

This prevents the encoder from automatically selecting the bandpass based on the available bitrate. If an application
knows the bandpass of the input audio it is providing, it should normally use OPUS_SET_MAX_BANDWIDTH instead,
which still gives the encoder the freedom to reduce the bandpass when the bitrate becomes too low, for better overall
quality.

See also

OPUS_GET_BANDWIDTH

Parameters

in x opus_int32: Allowed values:

OPUS_AUTO (default)

OPUS_BANDWIDTH_NARROWBAND 4 kHz passband

OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband

OPUS_BANDWIDTH_WIDEBAND 8 kHz passband

OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband

OPUS_BANDWIDTH_FULLBAND 20 kHz passband

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 57

4.6.2.20 OPUS_SET_BITRATE

#define OPUS_SET_BITRATE(

x)

Configures the bitrate in the encoder.

Rates from 500 to 512000 bits per second are meaningful, as well as the special values OPUS_AUTO and
OPUS_BITRATE_MAX. The value OPUS_BITRATE_MAX can be used to cause the codec to use as much rate as
it can, which is useful for controlling the rate by adjusting the output buffer size.

See also

OPUS_GET_BITRATE

Parameters

in x opus_int32: Bitrate in bits per second. The default is determined based on the number of channels
and the input sampling rate.

4.6.2.21 OPUS_SET_COMPLEXITY

#define OPUS_SET_COMPLEXITY(

x)

Configures the encoder's computational complexity.

The supported range is 0-10 inclusive with 10 representing the highest complexity.

See also

OPUS_GET_COMPLEXITY

Parameters

in x opus_int32: Allowed values: 0-10, inclusive.

4.6.2.22 OPUS_SET_DNN_BLOB

#define OPUS_SET_DNN_BLOB(

data,

len)

Provide external DNN weights from binary object (only when explicitly built without the weights)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

58 Topic Documentation

4.6.2.23 OPUS_SET_DRED_DURATION

#define OPUS_SET_DRED_DURATION(

x)

If non-zero, enables Deep Redundancy (DRED) and use the specified maximum number of 10-ms redundant frames.

4.6.2.24 OPUS_SET_DTX

#define OPUS_SET_DTX(

x)

Configures the encoder's use of discontinuous transmission (DTX).

Note

This is only applicable to the LPC layer

See also

OPUS_GET_DTX

Parameters

in x opus_int32: Allowed
values:

0 Disable DTX (default).

1 Enabled DTX.

4.6.2.25 OPUS_SET_EXPERT_FRAME_DURATION

#define OPUS_SET_EXPERT_FRAME_DURATION(

x)

Configures the encoder's use of variable duration frames.

When variable duration is enabled, the encoder is free to use a shorter frame size than the one requested in the opus←↩

_encode∗() call. It is then the user's responsibility to verify how much audio was encoded by checking the ToC byte of
the encoded packet. The part of the audio that was not encoded needs to be resent to the encoder for the next call. Do
not use this option unless you really know what you are doing.

See also

OPUS_GET_EXPERT_FRAME_DURATION

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 59

Parameters

in x opus_int32: Allowed values:

OPUS_FRAMESIZE_ARG Select frame size from the argument (default).

OPUS_FRAMESIZE_2_5_MS Use 2.5 ms frames.

OPUS_FRAMESIZE_5_MS Use 5 ms frames.

OPUS_FRAMESIZE_10_MS Use 10 ms frames.

OPUS_FRAMESIZE_20_MS Use 20 ms frames.

OPUS_FRAMESIZE_40_MS Use 40 ms frames.

OPUS_FRAMESIZE_60_MS Use 60 ms frames.

OPUS_FRAMESIZE_80_MS Use 80 ms frames.

OPUS_FRAMESIZE_100_MS Use 100 ms frames.

OPUS_FRAMESIZE_120_MS Use 120 ms frames.

4.6.2.26 OPUS_SET_FORCE_CHANNELS

#define OPUS_SET_FORCE_CHANNELS(

x)

Configures mono/stereo forcing in the encoder.

This can force the encoder to produce packets encoded as either mono or stereo, regardless of the format of the input
audio. This is useful when the caller knows that the input signal is currently a mono source embedded in a stereo
stream.

See also

OPUS_GET_FORCE_CHANNELS

Parameters

in x opus_int32: Allowed values:

OPUS_AUTO Not forced (default)

1 Forced mono

2 Forced stereo

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

60 Topic Documentation

4.6.2.27 OPUS_SET_INBAND_FEC

#define OPUS_SET_INBAND_FEC(

x)

Configures the encoder's use of inband forward error correction (FEC).

Note

This is only applicable to the LPC layer

See also

OPUS_GET_INBAND_FEC

Parameters

in x opus_int32: Allowed values:

0 Disable inband FEC (default).

1 Inband FEC enabled. If the packet loss rate is sufficiently high, Opus will automatically switch to SILK
even at high rates to enable use of that FEC.

2 Inband FEC enabled, but does not necessarily switch to SILK if we have music.

4.6.2.28 OPUS_SET_LSB_DEPTH

#define OPUS_SET_LSB_DEPTH(

x)

Configures the depth of signal being encoded.

This is a hint which helps the encoder identify silence and near-silence. It represents the number of significant bits of
linear intensity below which the signal contains ignorable quantization or other noise.

For example, OPUS_SET_LSB_DEPTH(14) would be an appropriate setting for G.711 u-law input. OPUS_SET_LSB_DEPTH(16)
would be appropriate for 16-bit linear pcm input with opus_encode_float().

When using opus_encode() instead of opus_encode_float(), or when libopus is compiled for fixed-point, the encoder
uses the minimum of the value set here and the value 16.

See also

OPUS_GET_LSB_DEPTH

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 61

Parameters

in x opus_int32: Input precision in bits, between 8 and 24 (default: 24).

4.6.2.29 OPUS_SET_MAX_BANDWIDTH

#define OPUS_SET_MAX_BANDWIDTH(

x)

Configures the maximum bandpass that the encoder will select automatically.

Applications should normally use this instead of OPUS_SET_BANDWIDTH (leaving that set to the default,
OPUS_AUTO). This allows the application to set an upper bound based on the type of input it is providing, but
still gives the encoder the freedom to reduce the bandpass when the bitrate becomes too low, for better overall quality.

See also

OPUS_GET_MAX_BANDWIDTH

Parameters

in x opus_int32: Allowed values:

OPUS_BANDWIDTH_NARROWBAND 4 kHz passband

OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband

OPUS_BANDWIDTH_WIDEBAND 8 kHz passband

OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband

OPUS_BANDWIDTH_FULLBAND 20 kHz passband (default)

4.6.2.30 OPUS_SET_PACKET_LOSS_PERC

#define OPUS_SET_PACKET_LOSS_PERC(

x)

Configures the encoder's expected packet loss percentage.

Higher values trigger progressively more loss resistant behavior in the encoder at the expense of quality at a given
bitrate in the absence of packet loss, but greater quality under loss.

See also

OPUS_GET_PACKET_LOSS_PERC

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

62 Topic Documentation

Parameters

in x opus_int32: Loss percentage in the range 0-100, inclusive (default: 0).

4.6.2.31 OPUS_SET_PREDICTION_DISABLED

#define OPUS_SET_PREDICTION_DISABLED(

x)

If set to 1, disables almost all use of prediction, making frames almost completely independent.

This reduces quality.

See also

OPUS_GET_PREDICTION_DISABLED

Parameters

in x opus_int32: Allowed
values:

0 Enable prediction (default).

1 Disable prediction.

4.6.2.32 OPUS_SET_QEXT

#define OPUS_SET_QEXT(

x)

If set to 1, enables quality extension (QEXT), otherwise disables it (default).

Warning: This will hurt audio quality unless operating at a very high bitrate.

4.6.2.33 OPUS_SET_SIGNAL

#define OPUS_SET_SIGNAL(

x)

Configures the type of signal being encoded.

This is a hint which helps the encoder's mode selection.

See also

OPUS_GET_SIGNAL

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.6 Encoder related CTLs 63

Parameters

in x opus_int32: Allowed values:

OPUS_AUTO (default)

OPUS_SIGNAL_VOICE Bias thresholds towards choosing LPC or Hybrid modes.

OPUS_SIGNAL_MUSIC Bias thresholds towards choosing MDCT modes.

4.6.2.34 OPUS_SET_VBR

#define OPUS_SET_VBR(

x)

Enables or disables variable bitrate (VBR) in the encoder.

The configured bitrate may not be met exactly because frames must be an integer number of bytes in length.

See also

OPUS_GET_VBR

OPUS_SET_VBR_CONSTRAINT

Parameters

in x opus_int32: Allowed values:

0 Hard CBR. For LPC/hybrid modes at very low bit-rate, this can cause noticeable quality degradation.

1 VBR (default). The exact type of VBR is controlled by OPUS_SET_VBR_CONSTRAINT.

4.6.2.35 OPUS_SET_VBR_CONSTRAINT

#define OPUS_SET_VBR_CONSTRAINT(

x)

Enables or disables constrained VBR in the encoder.

This setting is ignored when the encoder is in CBR mode.

Warning

Only the MDCT mode of Opus currently heeds the constraint. Speech mode ignores it completely, hybrid mode
may fail to obey it if the LPC layer uses more bitrate than the constraint would have permitted.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

64 Topic Documentation

See also

OPUS_GET_VBR_CONSTRAINT

OPUS_SET_VBR

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.7 Generic CTLs 65

Parameters

in x opus_int32: Allowed values:

0 Unconstrained VBR.

1 Constrained VBR (default). This creates a maximum of one frame of buffering delay assuming a
transport with a serialization speed of the nominal bitrate.

4.7 Generic CTLs

These macros are used with the opus_decoder_ctl and opus_encoder_ctl calls to generate a particular
request.

Macros

• #define OPUS_RESET_STATE

Resets the codec state to be equivalent to a freshly initialized state.
• #define OPUS_GET_FINAL_RANGE(x)

Gets the final state of the codec's entropy coder.
• #define OPUS_GET_BANDWIDTH(x)

Gets the encoder's configured bandpass or the decoder's last bandpass.
• #define OPUS_GET_SAMPLE_RATE(x)

Gets the sampling rate the encoder or decoder was initialized with.
• #define OPUS_SET_PHASE_INVERSION_DISABLED(x)

If set to 1, disables the use of phase inversion for intensity stereo, improving the quality of mono downmixes, but slightly
reducing normal stereo quality.

• #define OPUS_GET_PHASE_INVERSION_DISABLED(x)

Gets the encoder's configured phase inversion status.
• #define OPUS_GET_IN_DTX(x)

Gets the DTX state of the encoder.

4.7.1 Detailed Description

These macros are used with the opus_decoder_ctl and opus_encoder_ctl calls to generate a particular
request.

When called on an OpusDecoder they apply to that particular decoder instance. When called on an OpusEncoder
they apply to the corresponding setting on that encoder instance, if present.

Some usage examples:
int ret;
opus_int32 pitch;
ret = opus_decoder_ctl(dec_ctx, OPUS_GET_PITCH(&pitch));
if (ret == OPUS_OK) return ret;

opus_encoder_ctl(enc_ctx, OPUS_RESET_STATE);
opus_decoder_ctl(dec_ctx, OPUS_RESET_STATE);

opus_int32 enc_bw, dec_bw;
opus_encoder_ctl(enc_ctx, OPUS_GET_BANDWIDTH(&enc_bw));
opus_decoder_ctl(dec_ctx, OPUS_GET_BANDWIDTH(&dec_bw));
if (enc_bw != dec_bw) {

printf("packet bandwidth mismatch!\n");
}

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

66 Topic Documentation

See also

Opus Encoder, opus_decoder_ctl, opus_encoder_ctl, Decoder related CTLs, Encoder related CTLs

4.7.2 Macro Definition Documentation

4.7.2.1 OPUS_GET_BANDWIDTH

#define OPUS_GET_BANDWIDTH(

x)

Gets the encoder's configured bandpass or the decoder's last bandpass.

See also

OPUS_SET_BANDWIDTH

Parameters

out x opus_int32 ∗: Returns one of the following values:

OPUS_AUTO (default)

OPUS_BANDWIDTH_NARROWBAND 4 kHz passband

OPUS_BANDWIDTH_MEDIUMBAND 6 kHz passband

OPUS_BANDWIDTH_WIDEBAND 8 kHz passband

OPUS_BANDWIDTH_SUPERWIDEBAND 12 kHz passband

OPUS_BANDWIDTH_FULLBAND 20 kHz passband

4.7.2.2 OPUS_GET_FINAL_RANGE

#define OPUS_GET_FINAL_RANGE(

x)

Gets the final state of the codec's entropy coder.

This is used for testing purposes, The encoder and decoder state should be identical after coding a payload (assuming
no data corruption or software bugs)

Parameters

out x opus_uint32 ∗: Entropy coder state

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.7 Generic CTLs 67

4.7.2.3 OPUS_GET_IN_DTX

#define OPUS_GET_IN_DTX(

x)

Gets the DTX state of the encoder.

Returns whether the last encoded frame was either a comfort noise update during DTX or not encoded because of DTX.

Parameters

out x opus_int32 ∗: Returns one of the following
values:

0 The encoder is not in DTX.

1 The encoder is in DTX.

4.7.2.4 OPUS_GET_PHASE_INVERSION_DISABLED

#define OPUS_GET_PHASE_INVERSION_DISABLED(

x)

Gets the encoder's configured phase inversion status.

See also

OPUS_SET_PHASE_INVERSION_DISABLED

Parameters

out x opus_int32 ∗: Returns one of the following
values:

0 Stereo phase inversion enabled (default).

1 Stereo phase inversion disabled.

4.7.2.5 OPUS_GET_SAMPLE_RATE

#define OPUS_GET_SAMPLE_RATE(

x)

Gets the sampling rate the encoder or decoder was initialized with.

This simply returns the Fs value passed to opus_encoder_init() or opus_decoder_init().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

68 Topic Documentation

Parameters

out x opus_int32 ∗: Sampling rate of encoder or decoder.

4.7.2.6 OPUS_RESET_STATE

#define OPUS_RESET_STATE

Resets the codec state to be equivalent to a freshly initialized state.

This should be called when switching streams in order to prevent the back to back decoding from giving different results
from one at a time decoding.

4.7.2.7 OPUS_SET_PHASE_INVERSION_DISABLED

#define OPUS_SET_PHASE_INVERSION_DISABLED(

x)

If set to 1, disables the use of phase inversion for intensity stereo, improving the quality of mono downmixes, but slightly
reducing normal stereo quality.

Disabling phase inversion in the decoder does not comply with RFC 6716, although it does not cause any interoperability
issue and is expected to become part of the Opus standard once RFC 6716 is updated by draft-ietf-codec-opus-update.

See also

OPUS_GET_PHASE_INVERSION_DISABLED

Parameters

in x opus_int32: Allowed values:

0 Enable phase inversion (default).

1 Disable phase inversion.

4.8 Decoder related CTLs

Macros

• #define OPUS_SET_GAIN(x)

Configures decoder gain adjustment.

• #define OPUS_GET_GAIN(x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.8 Decoder related CTLs 69

Gets the decoder's configured gain adjustment.

• #define OPUS_GET_LAST_PACKET_DURATION(x)

Gets the duration (in samples) of the last packet successfully decoded or concealed.

• #define OPUS_GET_PITCH(x)

Gets the pitch of the last decoded frame, if available.

• #define OPUS_SET_OSCE_BWE(x)

Enables blind bandwidth extension for wideband signals if decoding sampling rate is 48 kHz.

• #define OPUS_GET_OSCE_BWE(x)

Gets blind bandwidth extension flag for wideband signals if decoding sampling rate is 48 kHz.

• #define OPUS_SET_IGNORE_EXTENSIONS(x)

If set to 1, the decoder will ignore all extensions found in the padding area (does not affect DRED, which is decoded
separately).

• #define OPUS_GET_IGNORE_EXTENSIONS(x)

Gets whether the decoder is ignoring extensions.

4.8.1 Detailed Description

See also

Generic CTLs, Encoder related CTLs, Opus Decoder

4.8.2 Macro Definition Documentation

4.8.2.1 OPUS_GET_GAIN

#define OPUS_GET_GAIN(

x)

Gets the decoder's configured gain adjustment.

See also

OPUS_SET_GAIN

Parameters

out x opus_int32 ∗: Amount to scale PCM signal by in Q8 dB units.

4.8.2.2 OPUS_GET_IGNORE_EXTENSIONS

#define OPUS_GET_IGNORE_EXTENSIONS(

x)

Gets whether the decoder is ignoring extensions.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

70 Topic Documentation

4.8.2.3 OPUS_GET_LAST_PACKET_DURATION

#define OPUS_GET_LAST_PACKET_DURATION(

x)

Gets the duration (in samples) of the last packet successfully decoded or concealed.

Parameters

out x opus_int32 ∗: Number of samples (at current sampling rate).

4.8.2.4 OPUS_GET_OSCE_BWE

#define OPUS_GET_OSCE_BWE(

x)

Gets blind bandwidth extension flag for wideband signals if decoding sampling rate is 48 kHz.

Parameters

out x opus_int32 ∗: 1 if bwe enabled, 0 if disabled.

4.8.2.5 OPUS_GET_PITCH

#define OPUS_GET_PITCH(

x)

Gets the pitch of the last decoded frame, if available.

This can be used for any post-processing algorithm requiring the use of pitch, e.g. time stretching/shortening. If the last
frame was not voiced, or if the pitch was not coded in the frame, then zero is returned.

This CTL is only implemented for decoder instances.

Parameters

out x opus_int32 ∗: pitch period at 48 kHz (or 0 if not available)

4.8.2.6 OPUS_SET_GAIN

#define OPUS_SET_GAIN(

x)

Configures decoder gain adjustment.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.9 Opus library information functions 71

Scales the decoded output by a factor specified in Q8 dB units. This has a maximum range of -32768 to 32767 inclusive,
and returns OPUS_BAD_ARG otherwise. The default is zero indicating no adjustment. This setting survives decoder
reset.

gain = pow(10, x/(20.0∗256))

Parameters

in x opus_int32: Amount to scale PCM signal by in Q8 dB units.

4.8.2.7 OPUS_SET_IGNORE_EXTENSIONS

#define OPUS_SET_IGNORE_EXTENSIONS(

x)

If set to 1, the decoder will ignore all extensions found in the padding area (does not affect DRED, which is decoded
separately).

4.8.2.8 OPUS_SET_OSCE_BWE

#define OPUS_SET_OSCE_BWE(

x)

Enables blind bandwidth extension for wideband signals if decoding sampling rate is 48 kHz.

Parameters

in x opus_int32 : 1 enables bandwidth extension, 0 disables it. The default is 0.

4.9 Opus library information functions

Functions

• const char ∗ opus_strerror (int error)

Converts an opus error code into a human readable string.
• const char ∗ opus_get_version_string (void)

Gets the libopus version string.

4.9.1 Detailed Description

4.9.2 Function Documentation

4.9.2.1 opus_get_version_string()

const char ∗ opus_get_version_string (

void)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

72 Topic Documentation

Gets the libopus version string.

Applications may look for the substring "-fixed" in the version string to determine whether they have a fixed-point or
floating-point build at runtime.

Returns

Version string

4.9.2.2 opus_strerror()

const char ∗ opus_strerror (

int error)

Converts an opus error code into a human readable string.

Parameters

in error int: Error number

Returns

Error string

4.10 Multistream specific encoder and decoder CTLs

These are convenience macros that are specific to the opus_multistream_encoder_ctl() and opus_multistream_decoder_ctl()
interface.

Macros

• #define OPUS_MULTISTREAM_GET_ENCODER_STATE(x, y)

Gets the encoder state for an individual stream of a multistream encoder.

• #define OPUS_MULTISTREAM_GET_DECODER_STATE(x, y)

Gets the decoder state for an individual stream of a multistream decoder.

4.10.1 Detailed Description

These are convenience macros that are specific to the opus_multistream_encoder_ctl() and opus_multistream_decoder_ctl()
interface.

The CTLs from Generic CTLs, Encoder related CTLs, and Decoder related CTLs may be applied to a multistream
encoder or decoder as well. In addition, you may retrieve the encoder or decoder state for an specific stream
via OPUS_MULTISTREAM_GET_ENCODER_STATE or OPUS_MULTISTREAM_GET_DECODER_STATE and apply
CTLs to it individually.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 73

4.10.2 Macro Definition Documentation

4.10.2.1 OPUS_MULTISTREAM_GET_DECODER_STATE

#define OPUS_MULTISTREAM_GET_DECODER_STATE(

x,

y)

Gets the decoder state for an individual stream of a multistream decoder.

Parameters

in x opus_int32: The index of the stream whose decoder you wish to retrieve. This must be
non-negative and less than the streams parameter used to initialize the decoder.

out y OpusDecoder∗∗: Returns a pointer to the given decoder state.

Return values

OPUS_BAD_ARG The index of the requested stream was out of range.

4.10.2.2 OPUS_MULTISTREAM_GET_ENCODER_STATE

#define OPUS_MULTISTREAM_GET_ENCODER_STATE(

x,

y)

Gets the encoder state for an individual stream of a multistream encoder.

Parameters

in x opus_int32: The index of the stream whose encoder you wish to retrieve. This must be
non-negative and less than the streams parameter used to initialize the encoder.

out y OpusEncoder∗∗: Returns a pointer to the given encoder state.

Return values

OPUS_BAD_ARG The index of the requested stream was out of range.

4.11 Opus Multistream API

The multistream API allows individual Opus streams to be combined into a single packet, enabling support for up to 255
channels.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

74 Topic Documentation

Typedefs

• typedef struct OpusMSEncoder OpusMSEncoder

Opus multistream encoder state.

• typedef struct OpusMSDecoder OpusMSDecoder

Opus multistream decoder state.

Multistream encoder functions

• opus_int32 opus_multistream_encoder_get_size (int streams, int coupled_streams)

Gets the size of an OpusMSEncoder structure.

• opus_int32 opus_multistream_surround_encoder_get_size (int channels, int mapping_family)
• OpusMSEncoder ∗ opus_multistream_encoder_create (opus_int32 Fs, int channels, int streams, int coupled_←↩

streams, const unsigned char ∗mapping, int application, int ∗error)

Allocates and initializes a multistream encoder state.

• OpusMSEncoder ∗ opus_multistream_surround_encoder_create (opus_int32 Fs, int channels, int mapping_←↩

family, int ∗streams, int ∗coupled_streams, unsigned char ∗mapping, int application, int ∗error)
• int opus_multistream_encoder_init (OpusMSEncoder ∗st, opus_int32 Fs, int channels, int streams, int coupled←↩

_streams, const unsigned char ∗mapping, int application)

Initialize a previously allocated multistream encoder state.

• int opus_multistream_surround_encoder_init (OpusMSEncoder ∗st, opus_int32 Fs, int channels, int mapping_←↩

family, int ∗streams, int ∗coupled_streams, unsigned char ∗mapping, int application)
• int opus_multistream_encode (OpusMSEncoder ∗st, const opus_int16 ∗pcm, int frame_size, unsigned char
∗data, opus_int32 max_data_bytes)

Encodes a multistream Opus frame.

• int opus_multistream_encode24 (OpusMSEncoder ∗st, const opus_int32 ∗pcm, int frame_size, unsigned char
∗data, opus_int32 max_data_bytes)

Encodes a multistream Opus frame.

• int opus_multistream_encode_float (OpusMSEncoder ∗st, const float ∗pcm, int frame_size, unsigned char ∗data,
opus_int32 max_data_bytes)

Encodes a multistream Opus frame from floating point input.

• void opus_multistream_encoder_destroy (OpusMSEncoder ∗st)

Frees an OpusMSEncoder allocated by opus_multistream_encoder_create().

• int opus_multistream_encoder_ctl (OpusMSEncoder ∗st, int request,...)

Perform a CTL function on a multistream Opus encoder.

Multistream decoder functions

• opus_int32 opus_multistream_decoder_get_size (int streams, int coupled_streams)

Gets the size of an OpusMSDecoder structure.

• OpusMSDecoder ∗ opus_multistream_decoder_create (opus_int32 Fs, int channels, int streams, int coupled_←↩

streams, const unsigned char ∗mapping, int ∗error)

Allocates and initializes a multistream decoder state.

• int opus_multistream_decoder_init (OpusMSDecoder ∗st, opus_int32 Fs, int channels, int streams, int coupled←↩

_streams, const unsigned char ∗mapping)

Initialize a previously allocated decoder state object.

• int opus_multistream_decode (OpusMSDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int16
∗pcm, int frame_size, int decode_fec)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 75

Decode a multistream Opus packet.

• int opus_multistream_decode24 (OpusMSDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int32
∗pcm, int frame_size, int decode_fec)

Decode a multistream Opus packet.

• int opus_multistream_decode_float (OpusMSDecoder ∗st, const unsigned char ∗data, opus_int32 len, float ∗pcm,
int frame_size, int decode_fec)

Decode a multistream Opus packet with floating point output.

• int opus_multistream_decoder_ctl (OpusMSDecoder ∗st, int request,...)

Perform a CTL function on a multistream Opus decoder.

• void opus_multistream_decoder_destroy (OpusMSDecoder ∗st)

Frees an OpusMSDecoder allocated by opus_multistream_decoder_create().

4.11.1 Detailed Description

The multistream API allows individual Opus streams to be combined into a single packet, enabling support for up to 255
channels.

Unlike an elementary Opus stream, the encoder and decoder must negotiate the channel configuration before the
decoder can successfully interpret the data in the packets produced by the encoder. Some basic information, such as
packet duration, can be computed without any special negotiation.

The format for multistream Opus packets is defined in RFC 7845 and is based on the self-delimited Opus framing
described in Appendix B of RFC 6716. Normal Opus packets are just a degenerate case of multistream Opus
packets, and can be encoded or decoded with the multistream API by setting streams to 1 when initializing the
encoder or decoder.

Multistream Opus streams can contain up to 255 elementary Opus streams. These may be either "uncoupled" or
"coupled", indicating that the decoder is configured to decode them to either 1 or 2 channels, respectively. The streams
are ordered so that all coupled streams appear at the beginning.

A mapping table defines which decoded channel i should be used for each input/output (I/O) channel j. This table
is typically provided as an unsigned char array. Let i = mapping[j] be the index for I/O channel j. If i <
2∗coupled_streams, then I/O channel j is encoded as the left channel of stream (i/2) if i is even, or as the
right channel of stream (i/2) if i is odd. Otherwise, I/O channel j is encoded as mono in stream (i - coupled←↩

_streams), unless it has the special value 255, in which case it is omitted from the encoding entirely (the decoder will
reproduce it as silence). Each value i must either be the special value 255 or be less than streams + coupled←↩

_streams.

The output channels specified by the encoder should use the Vorbis channel ordering. A decoder may wish
to apply an additional permutation to the mapping the encoder used to achieve a different output channel order (e.g. for
outputting in WAV order).

Each multistream packet contains an Opus packet for each stream, and all of the Opus packets in a single multistream
packet must have the same duration. Therefore the duration of a multistream packet can be extracted from the TOC
sequence of the first stream, which is located at the beginning of the packet, just like an elementary Opus stream:
int nb_samples;
int nb_frames;
nb_frames = opus_packet_get_nb_frames(data, len);
if (nb_frames < 1)

return nb_frames;
nb_samples = opus_packet_get_samples_per_frame(data, 48000) * nb_frames;

The general encoding and decoding process proceeds exactly the same as in the normal Opus Encoder and
Opus Decoder APIs. See their documentation for an overview of how to use the corresponding multistream functions.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

https://tools.ietf.org/html/rfc7845
https://tools.ietf.org/html/rfc6716
https://www.xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-810004.3.9

76 Topic Documentation

4.11.2 Typedef Documentation

4.11.2.1 OpusMSDecoder

typedef struct OpusMSDecoder OpusMSDecoder

Opus multistream decoder state.

This contains the complete state of a multistream Opus decoder. It is position independent and can be freely copied.

See also

opus_multistream_decoder_create

opus_multistream_decoder_init

4.11.2.2 OpusMSEncoder

typedef struct OpusMSEncoder OpusMSEncoder

Opus multistream encoder state.

This contains the complete state of a multistream Opus encoder. It is position independent and can be freely copied.

See also

opus_multistream_encoder_create

opus_multistream_encoder_init

4.11.3 Function Documentation

4.11.3.1 opus_multistream_decode()

int opus_multistream_decode (

OpusMSDecoder ∗ st,

const unsigned char ∗ data,

opus_int32 len,

opus_int16 ∗ pcm,

int frame_size,

int decode_fec)

Decode a multistream Opus packet.

Parameters

st OpusMSDecoder∗: Multistream decoder state.

in data const unsigned char∗: Input payload. Use a NULL pointer to indicate packet loss.

len opus_int32: Number of bytes in payload.

out pcm opus_int16∗: Output signal, with interleaved samples. This must contain room for
frame_size∗channels samples.

frame_size int: The number of samples per channel of available space in pcm. If this is less than the
maximum packet duration (120 ms; 5760 for 48kHz), this function will not be capable of
decoding some packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then
frame_size needs to be exactly the duration of audio that is missing, otherwise the decoder
will not be in the optimal state to decode the next incoming packet. For the PLC and FEC
cases, frame_size must be a multiple of 2.5 ms.

decode_fec int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 77

Returns

Number of samples decoded on success or a negative error code (see Error codes) on failure.

4.11.3.2 opus_multistream_decode24()

int opus_multistream_decode24 (

OpusMSDecoder ∗ st,

const unsigned char ∗ data,

opus_int32 len,

opus_int32 ∗ pcm,

int frame_size,

int decode_fec)

Decode a multistream Opus packet.

Parameters

st OpusMSDecoder∗: Multistream decoder state.

in data const unsigned char∗: Input payload. Use a NULL pointer to indicate packet loss.

len opus_int32: Number of bytes in payload.

out pcm opus_int32∗: Output signal, with interleaved samples representing (or slightly
exceeding) 24-bit values. This must contain room for frame_size∗channels samples.

frame_size int: The number of samples per channel of available space in pcm. If this is less than the
maximum packet duration (120 ms; 5760 for 48kHz), this function will not be capable of
decoding some packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then
frame_size needs to be exactly the duration of audio that is missing, otherwise the decoder
will not be in the optimal state to decode the next incoming packet. For the PLC and FEC
cases, frame_size must be a multiple of 2.5 ms.

decode_fec int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.

Returns

Number of samples decoded on success or a negative error code (see Error codes) on failure.

4.11.3.3 opus_multistream_decode_float()

int opus_multistream_decode_float (

OpusMSDecoder ∗ st,

const unsigned char ∗ data,

opus_int32 len,

float ∗ pcm,

int frame_size,

int decode_fec)

Decode a multistream Opus packet with floating point output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

78 Topic Documentation

Parameters

st OpusMSDecoder∗: Multistream decoder state.

in data const unsigned char∗: Input payload. Use a NULL pointer to indicate packet loss.

len opus_int32: Number of bytes in payload.

out pcm opus_int16∗: Output signal, with interleaved samples. This must contain room for
frame_size∗channels samples.

frame_size int: The number of samples per channel of available space in pcm. If this is less than the
maximum packet duration (120 ms; 5760 for 48kHz), this function will not be capable of
decoding some packets. In the case of PLC (data==NULL) or FEC (decode_fec=1), then
frame_size needs to be exactly the duration of audio that is missing, otherwise the decoder
will not be in the optimal state to decode the next incoming packet. For the PLC and FEC
cases, frame_size must be a multiple of 2.5 ms.

decode_fec int: Flag (0 or 1) to request that any in-band forward error correction data be decoded. If
no such data is available, the frame is decoded as if it were lost.

Returns

Number of samples decoded on success or a negative error code (see Error codes) on failure.

4.11.3.4 opus_multistream_decoder_create()

OpusMSDecoder ∗ opus_multistream_decoder_create (

opus_int32 Fs,

int channels,

int streams,

int coupled_streams,

const unsigned char ∗ mapping,

int ∗ error)

Allocates and initializes a multistream decoder state.

Call opus_multistream_decoder_destroy() to release this object when finished.

Parameters

Fs opus_int32: Sampling rate to decode at (in Hz). This must be one of 8000, 12000,
16000, 24000, or 48000.

channels int: Number of channels to output. This must be at most 255. It may be different
from the number of coded channels (streams + coupled_streams).

streams int: The total number of streams coded in the input. This must be no more than 255.

coupled_streams int: Number of streams to decode as coupled (2 channel) streams. This must be no
larger than the total number of streams. Additionally, The total number of coded
channels (streams + coupled_streams) must be no more than 255.

in mapping const unsigned char[channels]: Mapping from coded channels to output
channels, as described in Opus Multistream API.

out error int ∗: Returns OPUS_OK on success, or an error code (see Error codes) on failure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 79

4.11.3.5 opus_multistream_decoder_ctl()

int opus_multistream_decoder_ctl (

OpusMSDecoder ∗ st,

int request,

...)

Perform a CTL function on a multistream Opus decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

st OpusMSDecoder∗: Multistream decoder state.

request This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs,
Decoder related CTLs, or Multistream specific encoder and decoder CTLs.

See also

Generic CTLs

Decoder related CTLs

Multistream specific encoder and decoder CTLs

4.11.3.6 opus_multistream_decoder_destroy()

void opus_multistream_decoder_destroy (

OpusMSDecoder ∗ st)

Frees an OpusMSDecoder allocated by opus_multistream_decoder_create().

Parameters

st OpusMSDecoder: Multistream decoder state to be freed.

4.11.3.7 opus_multistream_decoder_get_size()

opus_int32 opus_multistream_decoder_get_size (

int streams,

int coupled_streams)

Gets the size of an OpusMSDecoder structure.

Parameters

streams int: The total number of streams coded in the input. This must be no more than 255.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

80 Topic Documentation

Parameters

coupled_streams int: Number streams to decode as coupled (2 channel) streams. This must be no larger than
the total number of streams. Additionally, The total number of coded channels (streams +
coupled_streams) must be no more than 255.

Returns

The size in bytes on success, or a negative error code (see Error codes) on error.

4.11.3.8 opus_multistream_decoder_init()

int opus_multistream_decoder_init (

OpusMSDecoder ∗ st,

opus_int32 Fs,

int channels,

int streams,

int coupled_streams,

const unsigned char ∗ mapping)

Initialize a previously allocated decoder state object.

The memory pointed to by st must be at least the size returned by opus_multistream_encoder_get_size(). This is
intended for applications which use their own allocator instead of malloc. To reset a previously initialized state, use the
OPUS_RESET_STATE CTL.

See also

opus_multistream_decoder_create

opus_multistream_deocder_get_size

Parameters

st OpusMSEncoder∗: Multistream encoder state to initialize.

Fs opus_int32: Sampling rate to decode at (in Hz). This must be one of 8000, 12000,
16000, 24000, or 48000.

channels int: Number of channels to output. This must be at most 255. It may be different from
the number of coded channels (streams + coupled_streams).

streams int: The total number of streams coded in the input. This must be no more than 255.

coupled_streams int: Number of streams to decode as coupled (2 channel) streams. This must be no
larger than the total number of streams. Additionally, The total number of coded
channels (streams + coupled_streams) must be no more than 255.

in mapping const unsigned char[channels]: Mapping from coded channels to output
channels, as described in Opus Multistream API.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 81

Returns

OPUS_OK on success, or an error code (see Error codes) on failure.

4.11.3.9 opus_multistream_encode()

int opus_multistream_encode (

OpusMSEncoder ∗ st,

const opus_int16 ∗ pcm,

int frame_size,

unsigned char ∗ data,

opus_int32 max_data_bytes)

Encodes a multistream Opus frame.

Parameters

st OpusMSEncoder∗: Multistream encoder state.

in pcm const opus_int16∗: The input signal as interleaved samples. This must contain
frame_size∗channels samples.

frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out data unsigned char∗: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes opus_int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET_BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.11.3.10 opus_multistream_encode24()

int opus_multistream_encode24 (

OpusMSEncoder ∗ st,

const opus_int32 ∗ pcm,

int frame_size,

unsigned char ∗ data,

opus_int32 max_data_bytes)

Encodes a multistream Opus frame.

Parameters

st OpusMSEncoder∗: Multistream encoder state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

82 Topic Documentation

Parameters

in pcm const opus_int32∗: The input signal as interleaved samples representing (or
slightly exceeding) 24-bit values. This must contain frame_size∗channels
samples.

frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out data unsigned char∗: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes opus_int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET_BITRATE to control the bitrate.

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.11.3.11 opus_multistream_encode_float()

int opus_multistream_encode_float (

OpusMSEncoder ∗ st,

const float ∗ pcm,

int frame_size,

unsigned char ∗ data,

opus_int32 max_data_bytes)

Encodes a multistream Opus frame from floating point input.

Parameters

st OpusMSEncoder∗: Multistream encoder state.

in pcm const float∗: The input signal as interleaved samples with a normal range of
+/-1.0. Samples with a range beyond +/-1.0 are supported but will be clipped by
decoders using the integer API and should only be used if it is known that the far end
supports extended dynamic range. This must contain frame_size∗channels
samples.

frame_size int: Number of samples per channel in the input signal. This must be an Opus frame
size for the encoder's sampling rate. For example, at 48 kHz the permitted values are
120, 240, 480, 960, 1920, and 2880. Passing in a duration of less than 10 ms (480
samples at 48 kHz) will prevent the encoder from using the LPC or hybrid modes.

out data unsigned char∗: Output payload. This must contain storage for at least
max_data_bytes.

in max_data_bytes opus_int32: Size of the allocated memory for the output payload. This may be
used to impose an upper limit on the instant bitrate, but should not be used as the only
bitrate control. Use OPUS_SET_BITRATE to control the bitrate.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 83

Returns

The length of the encoded packet (in bytes) on success or a negative error code (see Error codes) on failure.

4.11.3.12 opus_multistream_encoder_create()

OpusMSEncoder ∗ opus_multistream_encoder_create (

opus_int32 Fs,

int channels,

int streams,

int coupled_streams,

const unsigned char ∗ mapping,

int application,

int ∗ error)

Allocates and initializes a multistream encoder state.

Call opus_multistream_encoder_destroy() to release this object when finished.

Parameters

Fs opus_int32: Sampling rate of the input signal (in Hz). This must be one of 8000,
12000, 16000, 24000, or 48000.

channels int: Number of channels in the input signal. This must be at most 255. It may be
greater than the number of coded channels (streams + coupled_streams).

streams int: The total number of streams to encode from the input. This must be no more
than the number of channels.

coupled_streams int: Number of coupled (2 channel) streams to encode. This must be no larger than
the total number of streams. Additionally, The total number of encoded channels
(streams + coupled_streams) must be no more than the number of input
channels.

in mapping const unsigned char[channels]: Mapping from encoded channels to input
channels, as described in Opus Multistream API. As an extra constraint, the
multistream encoder does not allow encoding coupled streams for which one channel
is unused since this is never a good idea.

application int: The target encoder application. This must be one of the following:

OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.

OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum
possible coding delay by disabling certain modes of operation.

out error int ∗: Returns OPUS_OK on success, or an error code (see Error codes) on failure.

4.11.3.13 opus_multistream_encoder_ctl()

int opus_multistream_encoder_ctl (

OpusMSEncoder ∗ st,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

84 Topic Documentation

int request,

...)

Perform a CTL function on a multistream Opus encoder.

Generally the request and subsequent arguments are generated by a convenience macro.

Parameters

st OpusMSEncoder∗: Multistream encoder state.

request This and all remaining parameters should be replaced by one of the convenience macros in Generic CTLs,
Encoder related CTLs, or Multistream specific encoder and decoder CTLs.

See also

Generic CTLs

Encoder related CTLs

Multistream specific encoder and decoder CTLs

4.11.3.14 opus_multistream_encoder_destroy()

void opus_multistream_encoder_destroy (

OpusMSEncoder ∗ st)

Frees an OpusMSEncoder allocated by opus_multistream_encoder_create().

Parameters

st OpusMSEncoder∗: Multistream encoder state to be freed.

4.11.3.15 opus_multistream_encoder_get_size()

opus_int32 opus_multistream_encoder_get_size (

int streams,

int coupled_streams)

Gets the size of an OpusMSEncoder structure.

Parameters

streams int: The total number of streams to encode from the input. This must be no more than 255.

coupled_streams int: Number of coupled (2 channel) streams to encode. This must be no larger than the total
number of streams. Additionally, The total number of encoded channels (streams +
coupled_streams) must be no more than 255.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.11 Opus Multistream API 85

Returns

The size in bytes on success, or a negative error code (see Error codes) on error.

4.11.3.16 opus_multistream_encoder_init()

int opus_multistream_encoder_init (

OpusMSEncoder ∗ st,

opus_int32 Fs,

int channels,

int streams,

int coupled_streams,

const unsigned char ∗ mapping,

int application)

Initialize a previously allocated multistream encoder state.

The memory pointed to by st must be at least the size returned by opus_multistream_encoder_get_size(). This is
intended for applications which use their own allocator instead of malloc. To reset a previously initialized state, use the
OPUS_RESET_STATE CTL.

See also

opus_multistream_encoder_create

opus_multistream_encoder_get_size

Parameters

st OpusMSEncoder∗: Multistream encoder state to initialize.

Fs opus_int32: Sampling rate of the input signal (in Hz). This must be one of 8000,
12000, 16000, 24000, or 48000.

channels int: Number of channels in the input signal. This must be at most 255. It may be
greater than the number of coded channels (streams + coupled_streams).

streams int: The total number of streams to encode from the input. This must be no more than
the number of channels.

coupled_streams int: Number of coupled (2 channel) streams to encode. This must be no larger than
the total number of streams. Additionally, The total number of encoded channels
(streams + coupled_streams) must be no more than the number of input
channels.

in mapping const unsigned char[channels]: Mapping from encoded channels to input
channels, as described in Opus Multistream API. As an extra constraint, the
multistream encoder does not allow encoding coupled streams for which one channel is
unused since this is never a good idea.

application int: The target encoder application. This must be one of the following:

OPUS_APPLICATION_VOIP Process signal for improved speech intelligibility.

OPUS_APPLICATION_AUDIO Favor faithfulness to the original input.

OPUS_APPLICATION_RESTRICTED_LOWDELAY Configure the minimum possible
coding delay by disabling certain modes of operation.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

86 Topic Documentation

Returns

OPUS_OK on success, or an error code (see Error codes) on failure.

4.11.3.17 opus_multistream_surround_encoder_create()

OpusMSEncoder ∗ opus_multistream_surround_encoder_create (

opus_int32 Fs,

int channels,

int mapping_family,

int ∗ streams,

int ∗ coupled_streams,

unsigned char ∗ mapping,

int application,

int ∗ error)

4.11.3.18 opus_multistream_surround_encoder_get_size()

opus_int32 opus_multistream_surround_encoder_get_size (

int channels,

int mapping_family)

4.11.3.19 opus_multistream_surround_encoder_init()

int opus_multistream_surround_encoder_init (

OpusMSEncoder ∗ st,

opus_int32 Fs,

int channels,

int mapping_family,

int ∗ streams,

int ∗ coupled_streams,

unsigned char ∗ mapping,

int application)

4.12 Opus Custom

Opus Custom is an optional part of the Opus specification and reference implementation which uses a distinct API from
the regular API and supports frame sizes that are not normally supported. Use of Opus Custom is discouraged for all
but very special applications for which a frame size different from 2.5, 5, 10, or 20 ms is needed (for either complexity or
latency reasons) and where interoperability is less important.

Typedefs

• typedef struct OpusCustomEncoder OpusCustomEncoder

Contains the state of an encoder.
• typedef struct OpusCustomDecoder OpusCustomDecoder

State of the decoder.
• typedef struct OpusCustomMode OpusCustomMode

The mode contains all the information necessary to create an encoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 87

Functions

• OpusCustomMode ∗ opus_custom_mode_create (opus_int32 Fs, int frame_size, int ∗error)

Creates a new mode struct.

• void opus_custom_mode_destroy (OpusCustomMode ∗mode)

Destroys a mode struct.

• int opus_custom_encoder_get_size (const OpusCustomMode ∗mode, int channels)

Gets the size of an OpusCustomEncoder structure.

• OpusCustomEncoder ∗ opus_custom_encoder_create (const OpusCustomMode ∗mode, int channels, int ∗error)

Creates a new encoder state.

• void opus_custom_encoder_destroy (OpusCustomEncoder ∗st)

Destroys an encoder state.

• int opus_custom_encode_float (OpusCustomEncoder ∗st, const float ∗pcm, int frame_size, unsigned char
∗compressed, int maxCompressedBytes)

Encodes a frame of audio.

• int opus_custom_encode (OpusCustomEncoder ∗st, const opus_int16 ∗pcm, int frame_size, unsigned char
∗compressed, int maxCompressedBytes)

Encodes a frame of audio.

• int opus_custom_encode24 (OpusCustomEncoder ∗st, const opus_int32 ∗pcm, int frame_size, unsigned char
∗compressed, int maxCompressedBytes)

Encodes a frame of audio.

• int opus_custom_encoder_ctl (OpusCustomEncoder ∗OPUS_RESTRICT st, int request,...)

Perform a CTL function on an Opus custom encoder.

• int opus_custom_decoder_get_size (const OpusCustomMode ∗mode, int channels)

Gets the size of an OpusCustomDecoder structure.

• int opus_custom_decoder_init (OpusCustomDecoder ∗st, const OpusCustomMode ∗mode, int channels)

Initializes a previously allocated decoder state The memory pointed to by st must be the size returned by opus_custom←↩

_decoder_get_size.

• OpusCustomDecoder ∗ opus_custom_decoder_create (const OpusCustomMode ∗mode, int channels, int ∗error)

Creates a new decoder state.

• void opus_custom_decoder_destroy (OpusCustomDecoder ∗st)

Destroys a decoder state.

• int opus_custom_decode_float (OpusCustomDecoder ∗st, const unsigned char ∗data, int len, float ∗pcm, int
frame_size)

Decode an opus custom frame with floating point output.

• int opus_custom_decode (OpusCustomDecoder ∗st, const unsigned char ∗data, int len, opus_int16 ∗pcm, int
frame_size)

Decode an opus custom frame.

• int opus_custom_decode24 (OpusCustomDecoder ∗st, const unsigned char ∗data, int len, opus_int32 ∗pcm, int
frame_size)

Decode an opus custom frame.

• int opus_custom_decoder_ctl (OpusCustomDecoder ∗OPUS_RESTRICT st, int request,...)

Perform a CTL function on an Opus custom decoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

88 Topic Documentation

4.12.1 Detailed Description

Opus Custom is an optional part of the Opus specification and reference implementation which uses a distinct API from
the regular API and supports frame sizes that are not normally supported. Use of Opus Custom is discouraged for all
but very special applications for which a frame size different from 2.5, 5, 10, or 20 ms is needed (for either complexity or
latency reasons) and where interoperability is less important.

In addition to the interoperability limitations the use of Opus custom disables a substantial chunk of the codec and
generally lowers the quality available at a given bitrate. Normally when an application needs a different frame size from
the codec it should buffer to match the sizes but this adds a small amount of delay which may be important in some very
low latency applications. Some transports (especially constant rate RF transports) may also work best with frames of
particular durations.

Libopus only supports custom modes if they are enabled at compile time.

The Opus Custom API is similar to the regular API but the opus_encoder_create and opus_decoder_create calls take
an additional mode parameter which is a structure produced by a call to opus_custom_mode_create. Both the encoder
and decoder must create a mode using the same sample rate (fs) and frame size (frame size) so these parameters must
either be signaled out of band or fixed in a particular implementation.

Similar to regular Opus the custom modes support on the fly frame size switching, but the sizes available depend on the
particular frame size in use. For some initial frame sizes on a single on the fly size is available.

4.12.2 Typedef Documentation

4.12.2.1 OpusCustomDecoder

typedef struct OpusCustomDecoder OpusCustomDecoder

State of the decoder.

One decoder state is needed for each stream. It is initialized once at the beginning of the stream. Do not re-initialize the
state for every frame.

Decoder state

4.12.2.2 OpusCustomEncoder

typedef struct OpusCustomEncoder OpusCustomEncoder

Contains the state of an encoder.

One encoder state is needed for each stream. It is initialized once at the beginning of the stream. Do not re-initialize the
state for every frame.

Encoder state

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 89

4.12.2.3 OpusCustomMode

typedef struct OpusCustomMode OpusCustomMode

The mode contains all the information necessary to create an encoder.

Both the encoder and decoder need to be initialized with exactly the same mode, otherwise the output will be corrupted.
The mode MUST NOT BE DESTROYED until the encoders and decoders that use it are destroyed as well.

Mode configuration

4.12.3 Function Documentation

4.12.3.1 opus_custom_decode()

int opus_custom_decode (

OpusCustomDecoder ∗ st,

const unsigned char ∗ data,

int len,

opus_int16 ∗ pcm,

int frame_size)

Decode an opus custom frame.

Parameters

in st OpusCustomDecoder∗: Decoder state

in data char∗: Input payload. Use a NULL pointer to indicate packet loss

in len int: Number of bytes in payload

out pcm opus_int16∗: Output signal (interleaved if 2 channels). length is
frame_size∗channels∗sizeof(opus_int16)

in frame_size Number of samples per channel of available space in ∗pcm.

Returns

Number of decoded samples or Error codes

4.12.3.2 opus_custom_decode24()

int opus_custom_decode24 (

OpusCustomDecoder ∗ st,

const unsigned char ∗ data,

int len,

opus_int32 ∗ pcm,

int frame_size)

Decode an opus custom frame.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

90 Topic Documentation

Parameters

in st OpusCustomDecoder∗: Decoder state

in data char∗: Input payload. Use a NULL pointer to indicate packet loss

in len int: Number of bytes in payload

out pcm opus_int32∗: Output signal (interleaved if 2 channels) representing (or slightly
exceeding) 24-bit values. length is frame_size∗channels∗sizeof(opus_int32)

in frame_size Number of samples per channel of available space in ∗pcm.

Returns

Number of decoded samples or Error codes

4.12.3.3 opus_custom_decode_float()

int opus_custom_decode_float (

OpusCustomDecoder ∗ st,

const unsigned char ∗ data,

int len,

float ∗ pcm,

int frame_size)

Decode an opus custom frame with floating point output.

Parameters

in st OpusCustomDecoder∗: Decoder state

in data char∗: Input payload. Use a NULL pointer to indicate packet loss

in len int: Number of bytes in payload

out pcm float∗: Output signal (interleaved if 2 channels). length is frame_size∗channels∗sizeof(float)

in frame_size Number of samples per channel of available space in ∗pcm.

Returns

Number of decoded samples or Error codes

4.12.3.4 opus_custom_decoder_create()

OpusCustomDecoder ∗ opus_custom_decoder_create (

const OpusCustomMode ∗ mode,

int channels,

int ∗ error)

Creates a new decoder state.

Each stream needs its own decoder state (can't be shared across simultaneous streams).

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 91

Parameters

in mode OpusCustomMode: Contains all the information about the characteristics of the stream
(must be the same characteristics as used for the encoder)

in channels int: Number of channels
out error int∗: Returns an error code

Returns

Newly created decoder state.

4.12.3.5 opus_custom_decoder_ctl()

int opus_custom_decoder_ctl (

OpusCustomDecoder ∗OPUS_RESTRICT st,

int request,

...)

Perform a CTL function on an Opus custom decoder.

Generally the request and subsequent arguments are generated by a convenience macro.

See also

Generic CTLs

4.12.3.6 opus_custom_decoder_destroy()

void opus_custom_decoder_destroy (

OpusCustomDecoder ∗ st)

Destroys a decoder state.

Parameters

in st OpusCustomDecoder∗: State to be freed.

4.12.3.7 opus_custom_decoder_get_size()

int opus_custom_decoder_get_size (

const OpusCustomMode ∗ mode,

int channels)

Gets the size of an OpusCustomDecoder structure.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

92 Topic Documentation

Parameters

in mode OpusCustomMode ∗: Mode configuration

in channels int: Number of channels

Returns

size

4.12.3.8 opus_custom_decoder_init()

int opus_custom_decoder_init (

OpusCustomDecoder ∗ st,

const OpusCustomMode ∗ mode,

int channels)

Initializes a previously allocated decoder state The memory pointed to by st must be the size returned by opus_custom←↩

_decoder_get_size.

This is intended for applications which use their own allocator instead of malloc.

See also

opus_custom_decoder_create(),opus_custom_decoder_get_size() To reset a previously initialized state use the
OPUS_RESET_STATE CTL.

Parameters

in st OpusCustomDecoder∗: Decoder state

in mode OpusCustomMode ∗: Contains all the information about the characteristics of the stream
(must be the same characteristics as used for the encoder)

in channels int: Number of channels

Returns

OPUS_OK Success or Error codes

4.12.3.9 opus_custom_encode()

int opus_custom_encode (

OpusCustomEncoder ∗ st,

const opus_int16 ∗ pcm,

int frame_size,

unsigned char ∗ compressed,

int maxCompressedBytes)

Encodes a frame of audio.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 93

Parameters

in st OpusCustomEncoder∗: Encoder state

in pcm opus_int16∗: PCM audio in signed 16-bit format (native endian). There must
be exactly frame_size samples per channel.

in frame_size int: Number of samples per frame of input signal

out compressed char ∗: The compressed data is written here. This may not alias pcm and
must be at least maxCompressedBytes long.

in maxCompressedBytes int: Maximum number of bytes to use for compressing the frame (can change
from one frame to another)

Returns

Number of bytes written to "compressed". If negative, an error has occurred (see error codes). It is IMPORTANT
that the length returned be somehow transmitted to the decoder. Otherwise, no decoding is possible.

4.12.3.10 opus_custom_encode24()

int opus_custom_encode24 (

OpusCustomEncoder ∗ st,

const opus_int32 ∗ pcm,

int frame_size,

unsigned char ∗ compressed,

int maxCompressedBytes)

Encodes a frame of audio.

Parameters

in st OpusCustomEncoder∗: Encoder state

in pcm opus_int32∗: PCM audio in signed 32-bit format (native endian)
representing (or slightly exceeding) 24-bit values. There must be exactly
frame_size samples per channel.

in frame_size int: Number of samples per frame of input signal

out compressed char ∗: The compressed data is written here. This may not alias pcm and
must be at least maxCompressedBytes long.

in maxCompressedBytes int: Maximum number of bytes to use for compressing the frame (can change
from one frame to another)

Returns

Number of bytes written to "compressed". If negative, an error has occurred (see error codes). It is IMPORTANT
that the length returned be somehow transmitted to the decoder. Otherwise, no decoding is possible.

4.12.3.11 opus_custom_encode_float()

int opus_custom_encode_float (

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

94 Topic Documentation

OpusCustomEncoder ∗ st,

const float ∗ pcm,

int frame_size,

unsigned char ∗ compressed,

int maxCompressedBytes)

Encodes a frame of audio.

Parameters

in st OpusCustomEncoder∗: Encoder state

in pcm float∗: PCM audio in float format, with a normal range of +/-1.0. Samples
with a range beyond +/-1.0 are supported but will be clipped by decoders using
the integer API and should only be used if it is known that the far end supports
extended dynamic range. There must be exactly frame_size samples per
channel.

in frame_size int: Number of samples per frame of input signal

out compressed char ∗: The compressed data is written here. This may not alias pcm and
must be at least maxCompressedBytes long.

in maxCompressedBytes int: Maximum number of bytes to use for compressing the frame (can change
from one frame to another)

Returns

Number of bytes written to "compressed". If negative, an error has occurred (see error codes). It is IMPORTANT
that the length returned be somehow transmitted to the decoder. Otherwise, no decoding is possible.

4.12.3.12 opus_custom_encoder_create()

OpusCustomEncoder ∗ opus_custom_encoder_create (

const OpusCustomMode ∗ mode,

int channels,

int ∗ error)

Creates a new encoder state.

Each stream needs its own encoder state (can't be shared across simultaneous streams).

Parameters

in mode OpusCustomMode∗: Contains all the information about the characteristics of the stream
(must be the same characteristics as used for the decoder)

in channels int: Number of channels
out error int∗: Returns an error code

Returns

Newly created encoder state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

4.12 Opus Custom 95

4.12.3.13 opus_custom_encoder_ctl()

int opus_custom_encoder_ctl (

OpusCustomEncoder ∗OPUS_RESTRICT st,

int request,

...)

Perform a CTL function on an Opus custom encoder.

Generally the request and subsequent arguments are generated by a convenience macro.

See also

Encoder related CTLs

4.12.3.14 opus_custom_encoder_destroy()

void opus_custom_encoder_destroy (

OpusCustomEncoder ∗ st)

Destroys an encoder state.

Parameters

in st OpusCustomEncoder∗: State to be freed.

4.12.3.15 opus_custom_encoder_get_size()

int opus_custom_encoder_get_size (

const OpusCustomMode ∗ mode,

int channels)

Gets the size of an OpusCustomEncoder structure.

Parameters

in mode OpusCustomMode ∗: Mode configuration

in channels int: Number of channels

Returns

size

4.12.3.16 opus_custom_mode_create()

OpusCustomMode ∗ opus_custom_mode_create (

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

96 Topic Documentation

opus_int32 Fs,

int frame_size,

int ∗ error)

Creates a new mode struct.

This will be passed to an encoder or decoder. The mode MUST NOT BE DESTROYED until the encoders and decoders
that use it are destroyed as well.

Parameters

in Fs int: Sampling rate (8000 to 96000 Hz)

in frame_size int: Number of samples (per channel) to encode in each packet (64 - 1024, prime
factorization must contain zero or more 2s, 3s, or 5s and no other primes)

out error int∗: Returned error code (if NULL, no error will be returned)

Returns

A newly created mode

4.12.3.17 opus_custom_mode_destroy()

void opus_custom_mode_destroy (

OpusCustomMode ∗ mode)

Destroys a mode struct.

Only call this after all encoders and decoders using this mode are destroyed as well.

Parameters

in mode OpusCustomMode∗: Mode to be freed.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Chapter 5

File Documentation

5.1 opus.h File Reference

Opus reference implementation API.

#include "opus_types.h"
#include "opus_defines.h"
Include dependency graph for opus.h:

opus.h

opus_types.h

opus_defines.h

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

98 File Documentation

This graph shows which files directly or indirectly include this file:

opus.h

opus_multistream.h

Typedefs

• typedef struct OpusEncoder OpusEncoder

Opus encoder state.

• typedef struct OpusDecoder OpusDecoder

Opus decoder state.

• typedef struct OpusDREDDecoder OpusDREDDecoder

Opus DRED decoder.

• typedef struct OpusDRED OpusDRED

Opus DRED state.

• typedef struct OpusRepacketizer OpusRepacketizer

Functions

• int opus_encoder_get_size (int channels)

Gets the size of an OpusEncoder structure.

• OpusEncoder ∗ opus_encoder_create (opus_int32 Fs, int channels, int application, int ∗error)

Allocates and initializes an encoder state.

• int opus_encoder_init (OpusEncoder ∗st, opus_int32 Fs, int channels, int application)

Initializes a previously allocated encoder state The memory pointed to by st must be at least the size returned by
opus_encoder_get_size().

• opus_int32 opus_encode (OpusEncoder ∗st, const opus_int16 ∗pcm, int frame_size, unsigned char ∗data,
opus_int32 max_data_bytes)

Encodes an Opus frame.

• opus_int32 opus_encode24 (OpusEncoder ∗st, const opus_int32 ∗pcm, int frame_size, unsigned char ∗data,
opus_int32 max_data_bytes)

Encodes an Opus frame.

• opus_int32 opus_encode_float (OpusEncoder ∗st, const float ∗pcm, int frame_size, unsigned char ∗data,
opus_int32 max_data_bytes)

Encodes an Opus frame from floating point input.

• void opus_encoder_destroy (OpusEncoder ∗st)

Frees an OpusEncoder allocated by opus_encoder_create().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.1 opus.h File Reference 99

• int opus_encoder_ctl (OpusEncoder ∗st, int request,...)

Perform a CTL function on an Opus encoder.

• int opus_decoder_get_size (int channels)

Gets the size of an OpusDecoder structure.

• OpusDecoder ∗ opus_decoder_create (opus_int32 Fs, int channels, int ∗error)

Allocates and initializes a decoder state.

• int opus_decoder_init (OpusDecoder ∗st, opus_int32 Fs, int channels)

Initializes a previously allocated decoder state.

• int opus_decode (OpusDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int16 ∗pcm, int frame_size,
int decode_fec)

Decode an Opus packet.

• int opus_decode24 (OpusDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int32 ∗pcm, int frame←↩

_size, int decode_fec)

Decode an Opus packet.

• int opus_decode_float (OpusDecoder ∗st, const unsigned char ∗data, opus_int32 len, float ∗pcm, int frame_size,
int decode_fec)

Decode an Opus packet with floating point output.

• int opus_decoder_ctl (OpusDecoder ∗st, int request,...)

Perform a CTL function on an Opus decoder.

• void opus_decoder_destroy (OpusDecoder ∗st)

Frees an OpusDecoder allocated by opus_decoder_create().

• int opus_dred_decoder_get_size (void)

Gets the size of an OpusDREDDecoder structure.

• OpusDREDDecoder ∗ opus_dred_decoder_create (int ∗error)

Allocates and initializes an OpusDREDDecoder state.

• int opus_dred_decoder_init (OpusDREDDecoder ∗dec)

Initializes an OpusDREDDecoder state.

• void opus_dred_decoder_destroy (OpusDREDDecoder ∗dec)

Frees an OpusDREDDecoder allocated by opus_dred_decoder_create().

• int opus_dred_decoder_ctl (OpusDREDDecoder ∗dred_dec, int request,...)

Perform a CTL function on an Opus DRED decoder.

• int opus_dred_get_size (void)

Gets the size of an OpusDRED structure.

• OpusDRED ∗ opus_dred_alloc (int ∗error)

Allocates and initializes a DRED state.

• void opus_dred_free (OpusDRED ∗dec)

Frees an OpusDRED allocated by opus_dred_create().

• int opus_dred_parse (OpusDREDDecoder ∗dred_dec, OpusDRED ∗dred, const unsigned char ∗data, opus_int32
len, opus_int32 max_dred_samples, opus_int32 sampling_rate, int ∗dred_end, int defer_processing)

Decode an Opus DRED packet.

• int opus_dred_process (OpusDREDDecoder ∗dred_dec, const OpusDRED ∗src, OpusDRED ∗dst)

Finish decoding an Opus DRED packet.

• int opus_decoder_dred_decode (OpusDecoder ∗st, const OpusDRED ∗dred, opus_int32 dred_offset, opus_int16
∗pcm, opus_int32 frame_size)

Decode audio from an Opus DRED packet with 16-bit output.

• int opus_decoder_dred_decode24 (OpusDecoder ∗st, const OpusDRED ∗dred, opus_int32 dred_offset,
opus_int32 ∗pcm, opus_int32 frame_size)

Decode audio from an Opus DRED packet with 24-bit output.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

100 File Documentation

• int opus_decoder_dred_decode_float (OpusDecoder ∗st, const OpusDRED ∗dred, opus_int32 dred_offset, float
∗pcm, opus_int32 frame_size)

Decode audio from an Opus DRED packet with floating point output.

• int opus_packet_parse (const unsigned char ∗data, opus_int32 len, unsigned char ∗out_toc, const unsigned char
∗frames[48], opus_int16 size[48], int ∗payload_offset)

Parse an opus packet into one or more frames.

• int opus_packet_get_bandwidth (const unsigned char ∗data)

Gets the bandwidth of an Opus packet.

• int opus_packet_get_samples_per_frame (const unsigned char ∗data, opus_int32 Fs)

Gets the number of samples per frame from an Opus packet.

• int opus_packet_get_nb_channels (const unsigned char ∗data)

Gets the number of channels from an Opus packet.

• int opus_packet_get_nb_frames (const unsigned char packet[], opus_int32 len)

Gets the number of frames in an Opus packet.

• int opus_packet_get_nb_samples (const unsigned char packet[], opus_int32 len, opus_int32 Fs)

Gets the number of samples of an Opus packet.

• int opus_packet_has_lbrr (const unsigned char packet[], opus_int32 len)

Checks whether an Opus packet has LBRR.

• int opus_decoder_get_nb_samples (const OpusDecoder ∗dec, const unsigned char packet[], opus_int32 len)

Gets the number of samples of an Opus packet.

• void opus_pcm_soft_clip (float ∗pcm, int frame_size, int channels, float ∗softclip_mem)

Applies soft-clipping to bring a float signal within the [-1,1] range.

• int opus_repacketizer_get_size (void)

Gets the size of an OpusRepacketizer structure.

• OpusRepacketizer ∗ opus_repacketizer_init (OpusRepacketizer ∗rp)

(Re)initializes a previously allocated repacketizer state.

• OpusRepacketizer ∗ opus_repacketizer_create (void)

Allocates memory and initializes the new repacketizer with opus_repacketizer_init().

• void opus_repacketizer_destroy (OpusRepacketizer ∗rp)

Frees an OpusRepacketizer allocated by opus_repacketizer_create().

• int opus_repacketizer_cat (OpusRepacketizer ∗rp, const unsigned char ∗data, opus_int32 len)

Add a packet to the current repacketizer state.

• opus_int32 opus_repacketizer_out_range (OpusRepacketizer ∗rp, int begin, int end, unsigned char ∗data,
opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().

• int opus_repacketizer_get_nb_frames (OpusRepacketizer ∗rp)

Return the total number of frames contained in packet data submitted to the repacketizer state so far via
opus_repacketizer_cat() since the last call to opus_repacketizer_init() or opus_repacketizer_create().

• opus_int32 opus_repacketizer_out (OpusRepacketizer ∗rp, unsigned char ∗data, opus_int32 maxlen)

Construct a new packet from data previously submitted to the repacketizer state via opus_repacketizer_cat().

• int opus_packet_pad (unsigned char ∗data, opus_int32 len, opus_int32 new_len)

Pads a given Opus packet to a larger size (possibly changing the TOC sequence).

• opus_int32 opus_packet_unpad (unsigned char ∗data, opus_int32 len)

Remove all padding from a given Opus packet and rewrite the TOC sequence to minimize space usage.

• int opus_multistream_packet_pad (unsigned char ∗data, opus_int32 len, opus_int32 new_len, int nb_streams)

Pads a given Opus multi-stream packet to a larger size (possibly changing the TOC sequence).

• opus_int32 opus_multistream_packet_unpad (unsigned char ∗data, opus_int32 len, int nb_streams)

Remove all padding from a given Opus multi-stream packet and rewrite the TOC sequence to minimize space usage.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.2 opus.h 101

5.1.1 Detailed Description

Opus reference implementation API.

5.2 opus.h

Go to the documentation of this file.
00001 /* Copyright (c) 2010-2011 Xiph.Org Foundation, Skype Limited
00002 Written by Jean-Marc Valin and Koen Vos */
00003 /*
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions
00006 are met:
00007
00008 - Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 - Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in the
00013 documentation and/or other materials provided with the distribution.
00014
00015 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00016 ``AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00017 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00018 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
00019 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00020 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00021 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00022 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00023 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00024 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00025 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00026 */
00027
00033 #ifndef OPUS_H
00034 #define OPUS_H
00035
00036 #include "opus_types.h"
00037 #include "opus_defines.h"
00038
00039 #ifdef __cplusplus
00040 extern "C" {
00041 #endif
00042
00164 typedef struct OpusEncoder OpusEncoder;
00165
00174 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_encoder_get_size(int channels);
00175
00211 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusEncoder *opus_encoder_create(
00212 opus_int32 Fs,
00213 int channels,
00214 int application,
00215 int *error
00216);
00217
00231 OPUS_EXPORT int opus_encoder_init(
00232 OpusEncoder *st,
00233 opus_int32 Fs,
00234 int channels,
00235 int application
00236) OPUS_ARG_NONNULL(1);
00237
00266 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_encode(
00267 OpusEncoder *st,
00268 const opus_int16 *pcm,
00269 int frame_size,
00270 unsigned char *data,
00271 opus_int32 max_data_bytes
00272) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00273
00302 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_encode24(
00303 OpusEncoder *st,
00304 const opus_int32 *pcm,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

102 File Documentation

00305 int frame_size,
00306 unsigned char *data,
00307 opus_int32 max_data_bytes
00308) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00309
00343 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_encode_float(
00344 OpusEncoder *st,
00345 const float *pcm,
00346 int frame_size,
00347 unsigned char *data,
00348 opus_int32 max_data_bytes
00349) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00350
00354 OPUS_EXPORT void opus_encoder_destroy(OpusEncoder *st);
00355
00367 OPUS_EXPORT int opus_encoder_ctl(OpusEncoder *st, int request, ...) OPUS_ARG_NONNULL(1);
00438 typedef struct OpusDecoder OpusDecoder;
00439
00445 typedef struct OpusDREDDecoder OpusDREDDecoder;
00446
00447
00453 typedef struct OpusDRED OpusDRED;
00454
00460 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decoder_get_size(int channels);
00461
00477 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusDecoder *opus_decoder_create(
00478 opus_int32 Fs,
00479 int channels,
00480 int *error
00481);
00482
00494 OPUS_EXPORT int opus_decoder_init(
00495 OpusDecoder *st,
00496 opus_int32 Fs,
00497 int channels
00498) OPUS_ARG_NONNULL(1);
00499
00516 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decode(
00517 OpusDecoder *st,
00518 const unsigned char *data,
00519 opus_int32 len,
00520 opus_int16 *pcm,
00521 int frame_size,
00522 int decode_fec
00523) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00524
00541 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decode24(
00542 OpusDecoder *st,
00543 const unsigned char *data,
00544 opus_int32 len,
00545 opus_int32 *pcm,
00546 int frame_size,
00547 int decode_fec
00548) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00549
00566 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decode_float(
00567 OpusDecoder *st,
00568 const unsigned char *data,
00569 opus_int32 len,
00570 float *pcm,
00571 int frame_size,
00572 int decode_fec
00573) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00574
00586 OPUS_EXPORT int opus_decoder_ctl(OpusDecoder *st, int request, ...) OPUS_ARG_NONNULL(1);
00587
00591 OPUS_EXPORT void opus_decoder_destroy(OpusDecoder *st);
00592
00596 OPUS_EXPORT int opus_dred_decoder_get_size(void);
00597
00601 OPUS_EXPORT OpusDREDDecoder *opus_dred_decoder_create(int *error);
00602
00606 OPUS_EXPORT int opus_dred_decoder_init(OpusDREDDecoder *dec);
00607
00611 OPUS_EXPORT void opus_dred_decoder_destroy(OpusDREDDecoder *dec);
00612
00624 OPUS_EXPORT int opus_dred_decoder_ctl(OpusDREDDecoder *dred_dec, int request, ...);
00625
00629 OPUS_EXPORT int opus_dred_get_size(void);
00630
00634 OPUS_EXPORT OpusDRED *opus_dred_alloc(int *error);

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.2 opus.h 103

00635
00639 OPUS_EXPORT void opus_dred_free(OpusDRED *dec);
00640
00652 OPUS_EXPORT int opus_dred_parse(OpusDREDDecoder *dred_dec, OpusDRED *dred, const unsigned char *data,

opus_int32 len, opus_int32 max_dred_samples, opus_int32 sampling_rate, int *dred_end, int
defer_processing) OPUS_ARG_NONNULL(1);

00653
00661 OPUS_EXPORT int opus_dred_process(OpusDREDDecoder *dred_dec, const OpusDRED *src, OpusDRED *dst);
00662
00673 OPUS_EXPORT int opus_decoder_dred_decode(OpusDecoder *st, const OpusDRED *dred, opus_int32 dred_offset,

opus_int16 *pcm, opus_int32 frame_size);
00674
00685 OPUS_EXPORT int opus_decoder_dred_decode24(OpusDecoder *st, const OpusDRED *dred, opus_int32 dred_offset,

opus_int32 *pcm, opus_int32 frame_size);
00686
00697 OPUS_EXPORT int opus_decoder_dred_decode_float(OpusDecoder *st, const OpusDRED *dred, opus_int32

dred_offset, float *pcm, opus_int32 frame_size);
00698
00699
00713 OPUS_EXPORT int opus_packet_parse(
00714 const unsigned char *data,
00715 opus_int32 len,
00716 unsigned char *out_toc,
00717 const unsigned char *frames[48],
00718 opus_int16 size[48],
00719 int *payload_offset
00720) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5);
00721
00731 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_bandwidth(const unsigned char *data)

OPUS_ARG_NONNULL(1);
00732
00742 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_samples_per_frame(const unsigned char *data,

opus_int32 Fs) OPUS_ARG_NONNULL(1);
00743
00749 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_nb_channels(const unsigned char *data)

OPUS_ARG_NONNULL(1);
00750
00758 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_nb_frames(const unsigned char packet[], opus_int32

len) OPUS_ARG_NONNULL(1);
00759
00770 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_get_nb_samples(const unsigned char packet[],

opus_int32 len, opus_int32 Fs) OPUS_ARG_NONNULL(1);
00771
00778 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_packet_has_lbrr(const unsigned char packet[], opus_int32

len);
00779
00788 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_decoder_get_nb_samples(const OpusDecoder *dec, const unsigned

char packet[], opus_int32 len) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
00789
00800 OPUS_EXPORT void opus_pcm_soft_clip(float *pcm, int frame_size, int channels, float *softclip_mem);
00801
00802
00948 typedef struct OpusRepacketizer OpusRepacketizer;
00949
00953 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_repacketizer_get_size(void);
00954
00972 OPUS_EXPORT OpusRepacketizer *opus_repacketizer_init(OpusRepacketizer *rp) OPUS_ARG_NONNULL(1);
00973
00977 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusRepacketizer *opus_repacketizer_create(void);
00978
00983 OPUS_EXPORT void opus_repacketizer_destroy(OpusRepacketizer *rp);
00984
01032 OPUS_EXPORT int opus_repacketizer_cat(OpusRepacketizer *rp, const unsigned char *data, opus_int32 len)

OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
01033
01034
01066 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_repacketizer_out_range(OpusRepacketizer *rp, int

begin, int end, unsigned char *data, opus_int32 maxlen) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
01067
01078 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_repacketizer_get_nb_frames(OpusRepacketizer *rp)

OPUS_ARG_NONNULL(1);
01079
01109 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_repacketizer_out(OpusRepacketizer *rp, unsigned char

*data, opus_int32 maxlen) OPUS_ARG_NONNULL(1);
01110
01123 OPUS_EXPORT int opus_packet_pad(unsigned char *data, opus_int32 len, opus_int32 new_len);
01124
01136 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_packet_unpad(unsigned char *data, opus_int32 len);
01137
01152 OPUS_EXPORT int opus_multistream_packet_pad(unsigned char *data, opus_int32 len, opus_int32 new_len, int

nb_streams);

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

104 File Documentation

01153
01167 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_packet_unpad(unsigned char *data,

opus_int32 len, int nb_streams);
01168
01171 #ifdef __cplusplus
01172 }
01173 #endif
01174
01175 #endif /* OPUS_H */

5.3 opus_custom.h File Reference

Opus-Custom reference implementation API.

#include "opus_defines.h"
Include dependency graph for opus_custom.h:

opus_custom.h

opus_defines.h

opus_types.h

Macros

• #define OPUS_CUSTOM_EXPORT
• #define OPUS_CUSTOM_EXPORT_STATIC

Typedefs

• typedef struct OpusCustomEncoder OpusCustomEncoder

Contains the state of an encoder.

• typedef struct OpusCustomDecoder OpusCustomDecoder

State of the decoder.

• typedef struct OpusCustomMode OpusCustomMode

The mode contains all the information necessary to create an encoder.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.3 opus_custom.h File Reference 105

Functions

• OpusCustomMode ∗ opus_custom_mode_create (opus_int32 Fs, int frame_size, int ∗error)

Creates a new mode struct.

• void opus_custom_mode_destroy (OpusCustomMode ∗mode)

Destroys a mode struct.

• int opus_custom_encoder_get_size (const OpusCustomMode ∗mode, int channels)

Gets the size of an OpusCustomEncoder structure.

• OpusCustomEncoder ∗ opus_custom_encoder_create (const OpusCustomMode ∗mode, int channels, int ∗error)

Creates a new encoder state.

• void opus_custom_encoder_destroy (OpusCustomEncoder ∗st)

Destroys an encoder state.

• int opus_custom_encode_float (OpusCustomEncoder ∗st, const float ∗pcm, int frame_size, unsigned char
∗compressed, int maxCompressedBytes)

Encodes a frame of audio.

• int opus_custom_encode (OpusCustomEncoder ∗st, const opus_int16 ∗pcm, int frame_size, unsigned char
∗compressed, int maxCompressedBytes)

Encodes a frame of audio.

• int opus_custom_encode24 (OpusCustomEncoder ∗st, const opus_int32 ∗pcm, int frame_size, unsigned char
∗compressed, int maxCompressedBytes)

Encodes a frame of audio.

• int opus_custom_encoder_ctl (OpusCustomEncoder ∗OPUS_RESTRICT st, int request,...)

Perform a CTL function on an Opus custom encoder.

• int opus_custom_decoder_get_size (const OpusCustomMode ∗mode, int channels)

Gets the size of an OpusCustomDecoder structure.

• int opus_custom_decoder_init (OpusCustomDecoder ∗st, const OpusCustomMode ∗mode, int channels)

Initializes a previously allocated decoder state The memory pointed to by st must be the size returned by opus_custom←↩

_decoder_get_size.

• OpusCustomDecoder ∗ opus_custom_decoder_create (const OpusCustomMode ∗mode, int channels, int ∗error)

Creates a new decoder state.

• void opus_custom_decoder_destroy (OpusCustomDecoder ∗st)

Destroys a decoder state.

• int opus_custom_decode_float (OpusCustomDecoder ∗st, const unsigned char ∗data, int len, float ∗pcm, int
frame_size)

Decode an opus custom frame with floating point output.

• int opus_custom_decode (OpusCustomDecoder ∗st, const unsigned char ∗data, int len, opus_int16 ∗pcm, int
frame_size)

Decode an opus custom frame.

• int opus_custom_decode24 (OpusCustomDecoder ∗st, const unsigned char ∗data, int len, opus_int32 ∗pcm, int
frame_size)

Decode an opus custom frame.

• int opus_custom_decoder_ctl (OpusCustomDecoder ∗OPUS_RESTRICT st, int request,...)

Perform a CTL function on an Opus custom decoder.

5.3.1 Detailed Description

Opus-Custom reference implementation API.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

106 File Documentation

5.3.2 Macro Definition Documentation

5.3.2.1 OPUS_CUSTOM_EXPORT

#define OPUS_CUSTOM_EXPORT

5.3.2.2 OPUS_CUSTOM_EXPORT_STATIC

#define OPUS_CUSTOM_EXPORT_STATIC

5.4 opus_custom.h

Go to the documentation of this file.
00001 /* Copyright (c) 2007-2008 CSIRO
00002 Copyright (c) 2007-2009 Xiph.Org Foundation
00003 Copyright (c) 2008-2012 Gregory Maxwell
00004 Written by Jean-Marc Valin and Gregory Maxwell */
00005 /*
00006 Redistribution and use in source and binary forms, with or without
00007 modification, are permitted provided that the following conditions
00008 are met:
00009
00010 - Redistributions of source code must retain the above copyright
00011 notice, this list of conditions and the following disclaimer.
00012
00013 - Redistributions in binary form must reproduce the above copyright
00014 notice, this list of conditions and the following disclaimer in the
00015 documentation and/or other materials provided with the distribution.
00016
00017 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00018 ``AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00019 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00020 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
00021 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00022 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00023 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00024 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00025 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00026 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00027 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00028 */
00029
00035 #ifndef OPUS_CUSTOM_H
00036 #define OPUS_CUSTOM_H
00037
00038 #include "opus_defines.h"
00039
00040 #ifdef __cplusplus
00041 extern "C" {
00042 #endif
00043
00044 #if defined(CUSTOM_MODES) || defined(ENABLE_OPUS_CUSTOM_API)
00045 # define OPUS_CUSTOM_EXPORT OPUS_EXPORT
00046 # define OPUS_CUSTOM_EXPORT_STATIC OPUS_EXPORT
00047 #else
00048 # define OPUS_CUSTOM_EXPORT
00049 # ifdef OPUS_BUILD
00050 # define OPUS_CUSTOM_EXPORT_STATIC static OPUS_INLINE
00051 # else
00052 # define OPUS_CUSTOM_EXPORT_STATIC
00053 # endif
00054 #endif
00055
00095 typedef struct OpusCustomEncoder OpusCustomEncoder;
00096
00102 typedef struct OpusCustomDecoder OpusCustomDecoder;
00103

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.4 opus_custom.h 107

00111 typedef struct OpusCustomMode OpusCustomMode;
00112
00122 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomMode *opus_custom_mode_create(opus_int32 Fs, int

frame_size, int *error);
00123
00128 OPUS_CUSTOM_EXPORT void opus_custom_mode_destroy(OpusCustomMode *mode);
00129
00130
00131 #if !defined(OPUS_BUILD) || defined(CELT_ENCODER_C)
00132
00133 /* Encoder */
00139 OPUS_CUSTOM_EXPORT_STATIC OPUS_WARN_UNUSED_RESULT int opus_custom_encoder_get_size(
00140 const OpusCustomMode *mode,
00141 int channels
00142) OPUS_ARG_NONNULL(1);
00143
00144 #if defined(CUSTOM_MODES) || defined(ENABLE_OPUS_CUSTOM_API)
00157 OPUS_CUSTOM_EXPORT int opus_custom_encoder_init(
00158 OpusCustomEncoder *st,
00159 const OpusCustomMode *mode,
00160 int channels
00161) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
00162 # endif
00163 #endif
00164
00165
00175 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomEncoder *opus_custom_encoder_create(
00176 const OpusCustomMode *mode,
00177 int channels,
00178 int *error
00179) OPUS_ARG_NONNULL(1);
00180
00181
00185 OPUS_CUSTOM_EXPORT void opus_custom_encoder_destroy(OpusCustomEncoder *st);
00186
00204 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_encode_float(
00205 OpusCustomEncoder *st,
00206 const float *pcm,
00207 int frame_size,
00208 unsigned char *compressed,
00209 int maxCompressedBytes
00210) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00211
00225 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_encode(
00226 OpusCustomEncoder *st,
00227 const opus_int16 *pcm,
00228 int frame_size,
00229 unsigned char *compressed,
00230 int maxCompressedBytes
00231) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00232
00246 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_encode24(
00247 OpusCustomEncoder *st,
00248 const opus_int32 *pcm,
00249 int frame_size,
00250 unsigned char *compressed,
00251 int maxCompressedBytes
00252) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00253
00260 OPUS_CUSTOM_EXPORT int opus_custom_encoder_ctl(OpusCustomEncoder * OPUS_RESTRICT st, int request, ...)

OPUS_ARG_NONNULL(1);
00261
00262
00263 #if !defined(OPUS_BUILD) || defined(CELT_DECODER_C)
00264 /* Decoder */
00265
00271 OPUS_CUSTOM_EXPORT_STATIC OPUS_WARN_UNUSED_RESULT int opus_custom_decoder_get_size(
00272 const OpusCustomMode *mode,
00273 int channels
00274) OPUS_ARG_NONNULL(1);
00275
00288 OPUS_CUSTOM_EXPORT_STATIC int opus_custom_decoder_init(
00289 OpusCustomDecoder *st,
00290 const OpusCustomMode *mode,
00291 int channels
00292) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2);
00293
00294 #endif
00295
00296
00305 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT OpusCustomDecoder *opus_custom_decoder_create(

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

108 File Documentation

00306 const OpusCustomMode *mode,
00307 int channels,
00308 int *error
00309) OPUS_ARG_NONNULL(1);
00310
00314 OPUS_CUSTOM_EXPORT void opus_custom_decoder_destroy(OpusCustomDecoder *st);
00315
00325 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_decode_float(
00326 OpusCustomDecoder *st,
00327 const unsigned char *data,
00328 int len,
00329 float *pcm,
00330 int frame_size
00331) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00332
00342 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_decode(
00343 OpusCustomDecoder *st,
00344 const unsigned char *data,
00345 int len,
00346 opus_int16 *pcm,
00347 int frame_size
00348) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00349
00359 OPUS_CUSTOM_EXPORT OPUS_WARN_UNUSED_RESULT int opus_custom_decode24(
00360 OpusCustomDecoder *st,
00361 const unsigned char *data,
00362 int len,
00363 opus_int32 *pcm,
00364 int frame_size
00365) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00366
00373 OPUS_CUSTOM_EXPORT int opus_custom_decoder_ctl(OpusCustomDecoder * OPUS_RESTRICT st, int request, ...)

OPUS_ARG_NONNULL(1);
00374
00377 #ifdef __cplusplus
00378 }
00379 #endif
00380
00381 #endif /* OPUS_CUSTOM_H */

5.5 opus_defines.h File Reference

Opus reference implementation constants.

#include "opus_types.h"
Include dependency graph for opus_defines.h:

opus_defines.h

opus_types.h

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.5 opus_defines.h File Reference 109

This graph shows which files directly or indirectly include this file:

opus_defines.h

opus.h opus_custom.h

opus_multistream.h

Macros

• #define OPUS_OK

No error.

• #define OPUS_BAD_ARG

One or more invalid/out of range arguments.

• #define OPUS_BUFFER_TOO_SMALL

Not enough bytes allocated in the buffer.

• #define OPUS_INTERNAL_ERROR

An internal error was detected.

• #define OPUS_INVALID_PACKET

The compressed data passed is corrupted.

• #define OPUS_UNIMPLEMENTED

Invalid/unsupported request number.

• #define OPUS_INVALID_STATE

An encoder or decoder structure is invalid or already freed.

• #define OPUS_ALLOC_FAIL

Memory allocation has failed.

• #define OPUS_AUTO

Auto/default setting.

• #define OPUS_BITRATE_MAX

Maximum bitrate.

• #define OPUS_APPLICATION_VOIP

Best for most VoIP/videoconference applications where listening quality and intelligibility matter most.

• #define OPUS_APPLICATION_AUDIO

Best for broadcast/high-fidelity application where the decoded audio should be as close as possible to the input.

• #define OPUS_APPLICATION_RESTRICTED_LOWDELAY

Only use when lowest-achievable latency is what matters most.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

110 File Documentation

• #define OPUS_APPLICATION_RESTRICTED_SILK 2052

Experts only: forces SILK encoding; don't allocate CELT state at all.

• #define OPUS_APPLICATION_RESTRICTED_CELT 2053

Experts only: forces CELT encoding; don't allocate SILK state at all.

• #define OPUS_SIGNAL_VOICE 3001

Signal being encoded is voice.

• #define OPUS_SIGNAL_MUSIC 3002

Signal being encoded is music.

• #define OPUS_BANDWIDTH_NARROWBAND

4 kHz bandpass

• #define OPUS_BANDWIDTH_MEDIUMBAND

6 kHz bandpass

• #define OPUS_BANDWIDTH_WIDEBAND

8 kHz bandpass

• #define OPUS_BANDWIDTH_SUPERWIDEBAND

12 kHz bandpass

• #define OPUS_BANDWIDTH_FULLBAND

20 kHz bandpass

• #define OPUS_FRAMESIZE_ARG 5000

Select frame size from the argument (default)

• #define OPUS_FRAMESIZE_2_5_MS 5001

Use 2.5 ms frames.

• #define OPUS_FRAMESIZE_5_MS 5002

Use 5 ms frames.

• #define OPUS_FRAMESIZE_10_MS 5003

Use 10 ms frames.

• #define OPUS_FRAMESIZE_20_MS 5004

Use 20 ms frames.

• #define OPUS_FRAMESIZE_40_MS 5005

Use 40 ms frames.

• #define OPUS_FRAMESIZE_60_MS 5006

Use 60 ms frames.

• #define OPUS_FRAMESIZE_80_MS 5007

Use 80 ms frames.

• #define OPUS_FRAMESIZE_100_MS 5008

Use 100 ms frames.

• #define OPUS_FRAMESIZE_120_MS 5009

Use 120 ms frames.

• #define OPUS_SET_COMPLEXITY(x)

Configures the encoder's computational complexity.

• #define OPUS_GET_COMPLEXITY(x)

Gets the encoder's complexity configuration.

• #define OPUS_SET_BITRATE(x)

Configures the bitrate in the encoder.

• #define OPUS_GET_BITRATE(x)

Gets the encoder's bitrate configuration.

• #define OPUS_SET_VBR(x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.5 opus_defines.h File Reference 111

Enables or disables variable bitrate (VBR) in the encoder.

• #define OPUS_GET_VBR(x)

Determine if variable bitrate (VBR) is enabled in the encoder.

• #define OPUS_SET_VBR_CONSTRAINT(x)

Enables or disables constrained VBR in the encoder.

• #define OPUS_GET_VBR_CONSTRAINT(x)

Determine if constrained VBR is enabled in the encoder.

• #define OPUS_SET_FORCE_CHANNELS(x)

Configures mono/stereo forcing in the encoder.

• #define OPUS_GET_FORCE_CHANNELS(x)

Gets the encoder's forced channel configuration.

• #define OPUS_SET_MAX_BANDWIDTH(x)

Configures the maximum bandpass that the encoder will select automatically.

• #define OPUS_GET_MAX_BANDWIDTH(x)

Gets the encoder's configured maximum allowed bandpass.

• #define OPUS_SET_BANDWIDTH(x)

Sets the encoder's bandpass to a specific value.

• #define OPUS_SET_SIGNAL(x)

Configures the type of signal being encoded.

• #define OPUS_GET_SIGNAL(x)

Gets the encoder's configured signal type.

• #define OPUS_SET_APPLICATION(x)

Configures the encoder's intended application.

• #define OPUS_GET_APPLICATION(x)

Gets the encoder's configured application.

• #define OPUS_GET_LOOKAHEAD(x)

Gets the total samples of delay added by the entire codec.

• #define OPUS_SET_INBAND_FEC(x)

Configures the encoder's use of inband forward error correction (FEC).

• #define OPUS_GET_INBAND_FEC(x)

Gets encoder's configured use of inband forward error correction.

• #define OPUS_SET_PACKET_LOSS_PERC(x)

Configures the encoder's expected packet loss percentage.

• #define OPUS_GET_PACKET_LOSS_PERC(x)

Gets the encoder's configured packet loss percentage.

• #define OPUS_SET_DTX(x)

Configures the encoder's use of discontinuous transmission (DTX).

• #define OPUS_GET_DTX(x)

Gets encoder's configured use of discontinuous transmission.

• #define OPUS_SET_LSB_DEPTH(x)

Configures the depth of signal being encoded.

• #define OPUS_GET_LSB_DEPTH(x)

Gets the encoder's configured signal depth.

• #define OPUS_SET_EXPERT_FRAME_DURATION(x)

Configures the encoder's use of variable duration frames.

• #define OPUS_GET_EXPERT_FRAME_DURATION(x)

Gets the encoder's configured use of variable duration frames.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

112 File Documentation

• #define OPUS_SET_PREDICTION_DISABLED(x)

If set to 1, disables almost all use of prediction, making frames almost completely independent.

• #define OPUS_GET_PREDICTION_DISABLED(x)

Gets the encoder's configured prediction status.

• #define OPUS_SET_DRED_DURATION(x)

If non-zero, enables Deep Redundancy (DRED) and use the specified maximum number of 10-ms redundant frames.

• #define OPUS_GET_DRED_DURATION(x)

Gets the encoder's configured Deep Redundancy (DRED) maximum number of frames.

• #define OPUS_SET_DNN_BLOB(data, len)

Provide external DNN weights from binary object (only when explicitly built without the weights)

• #define OPUS_SET_QEXT(x)

If set to 1, enables quality extension (QEXT), otherwise disables it (default).

• #define OPUS_GET_QEXT(x)

Gets the encoder's configured quality extension (QEXT).

• #define OPUS_RESET_STATE

Resets the codec state to be equivalent to a freshly initialized state.

• #define OPUS_GET_FINAL_RANGE(x)

Gets the final state of the codec's entropy coder.

• #define OPUS_GET_BANDWIDTH(x)

Gets the encoder's configured bandpass or the decoder's last bandpass.

• #define OPUS_GET_SAMPLE_RATE(x)

Gets the sampling rate the encoder or decoder was initialized with.

• #define OPUS_SET_PHASE_INVERSION_DISABLED(x)

If set to 1, disables the use of phase inversion for intensity stereo, improving the quality of mono downmixes, but slightly
reducing normal stereo quality.

• #define OPUS_GET_PHASE_INVERSION_DISABLED(x)

Gets the encoder's configured phase inversion status.

• #define OPUS_GET_IN_DTX(x)

Gets the DTX state of the encoder.

• #define OPUS_SET_GAIN(x)

Configures decoder gain adjustment.

• #define OPUS_GET_GAIN(x)

Gets the decoder's configured gain adjustment.

• #define OPUS_GET_LAST_PACKET_DURATION(x)

Gets the duration (in samples) of the last packet successfully decoded or concealed.

• #define OPUS_GET_PITCH(x)

Gets the pitch of the last decoded frame, if available.

• #define OPUS_SET_OSCE_BWE(x)

Enables blind bandwidth extension for wideband signals if decoding sampling rate is 48 kHz.

• #define OPUS_GET_OSCE_BWE(x)

Gets blind bandwidth extension flag for wideband signals if decoding sampling rate is 48 kHz.

• #define OPUS_SET_IGNORE_EXTENSIONS(x)

If set to 1, the decoder will ignore all extensions found in the padding area (does not affect DRED, which is decoded
separately).

• #define OPUS_GET_IGNORE_EXTENSIONS(x)

Gets whether the decoder is ignoring extensions.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.6 opus_defines.h 113

Functions

• const char ∗ opus_strerror (int error)

Converts an opus error code into a human readable string.

• const char ∗ opus_get_version_string (void)

Gets the libopus version string.

5.5.1 Detailed Description

Opus reference implementation constants.

5.6 opus_defines.h

Go to the documentation of this file.
00001 /* Copyright (c) 2010-2011 Xiph.Org Foundation, Skype Limited
00002 Written by Jean-Marc Valin and Koen Vos */
00003 /*
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions
00006 are met:
00007
00008 - Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 - Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in the
00013 documentation and/or other materials provided with the distribution.
00014
00015 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00016 ``AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00017 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00018 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
00019 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00020 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00021 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00022 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00023 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00024 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00025 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00026 */
00027
00033 #ifndef OPUS_DEFINES_H
00034 #define OPUS_DEFINES_H
00035
00036 #include "opus_types.h"
00037
00038 #ifdef __cplusplus
00039 extern "C" {
00040 #endif
00041
00046 #define OPUS_OK 0
00048 #define OPUS_BAD_ARG -1
00050 #define OPUS_BUFFER_TOO_SMALL -2
00052 #define OPUS_INTERNAL_ERROR -3
00054 #define OPUS_INVALID_PACKET -4
00056 #define OPUS_UNIMPLEMENTED -5
00058 #define OPUS_INVALID_STATE -6
00060 #define OPUS_ALLOC_FAIL -7
00066 #ifndef OPUS_EXPORT
00067 # if defined(_WIN32)
00068 # if defined(OPUS_BUILD) && defined(DLL_EXPORT)
00069 # define OPUS_EXPORT __declspec(dllexport)
00070 # else
00071 # define OPUS_EXPORT
00072 # endif
00073 # elif defined(__GNUC__) && defined(OPUS_BUILD)
00074 # define OPUS_EXPORT __attribute__ ((visibility ("default")))

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

114 File Documentation

00075 # else
00076 # define OPUS_EXPORT
00077 # endif
00078 #endif
00079
00080 # if !defined(OPUS_GNUC_PREREQ)
00081 # if defined(__GNUC__)&&defined(__GNUC_MINOR__)
00082 # define OPUS_GNUC_PREREQ(_maj,_min) \
00083 ((__GNUC__«16)+__GNUC_MINOR__>=((_maj)«16)+(_min))
00084 # else
00085 # define OPUS_GNUC_PREREQ(_maj,_min) 0
00086 # endif
00087 # endif
00088
00089 #if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L))
00090 # if OPUS_GNUC_PREREQ(3,0)
00091 # define OPUS_RESTRICT __restrict__
00092 # elif (defined(_MSC_VER) && _MSC_VER >= 1400)
00093 # define OPUS_RESTRICT __restrict
00094 # else
00095 # define OPUS_RESTRICT
00096 # endif
00097 #else
00098 # define OPUS_RESTRICT restrict
00099 #endif
00100
00101 #if (!defined(__STDC_VERSION__) || (__STDC_VERSION__ < 199901L))
00102 # if OPUS_GNUC_PREREQ(2,7)
00103 # define OPUS_INLINE __inline__
00104 # elif (defined(_MSC_VER))
00105 # define OPUS_INLINE __inline
00106 # else
00107 # define OPUS_INLINE
00108 # endif
00109 #else
00110 # define OPUS_INLINE inline
00111 #endif
00112
00116 #if defined(__GNUC__) && OPUS_GNUC_PREREQ(3, 4)
00117 # define OPUS_WARN_UNUSED_RESULT __attribute__ ((__warn_unused_result__))
00118 #else
00119 # define OPUS_WARN_UNUSED_RESULT
00120 #endif
00121 #if !defined(OPUS_BUILD) && defined(__GNUC__) && OPUS_GNUC_PREREQ(3, 4)
00122 # define OPUS_ARG_NONNULL(_x) __attribute__ ((__nonnull__(_x)))
00123 #else
00124 # define OPUS_ARG_NONNULL(_x)
00125 #endif
00126
00130 #define OPUS_SET_APPLICATION_REQUEST 4000
00131 #define OPUS_GET_APPLICATION_REQUEST 4001
00132 #define OPUS_SET_BITRATE_REQUEST 4002
00133 #define OPUS_GET_BITRATE_REQUEST 4003
00134 #define OPUS_SET_MAX_BANDWIDTH_REQUEST 4004
00135 #define OPUS_GET_MAX_BANDWIDTH_REQUEST 4005
00136 #define OPUS_SET_VBR_REQUEST 4006
00137 #define OPUS_GET_VBR_REQUEST 4007
00138 #define OPUS_SET_BANDWIDTH_REQUEST 4008
00139 #define OPUS_GET_BANDWIDTH_REQUEST 4009
00140 #define OPUS_SET_COMPLEXITY_REQUEST 4010
00141 #define OPUS_GET_COMPLEXITY_REQUEST 4011
00142 #define OPUS_SET_INBAND_FEC_REQUEST 4012
00143 #define OPUS_GET_INBAND_FEC_REQUEST 4013
00144 #define OPUS_SET_PACKET_LOSS_PERC_REQUEST 4014
00145 #define OPUS_GET_PACKET_LOSS_PERC_REQUEST 4015
00146 #define OPUS_SET_DTX_REQUEST 4016
00147 #define OPUS_GET_DTX_REQUEST 4017
00148 #define OPUS_SET_VBR_CONSTRAINT_REQUEST 4020
00149 #define OPUS_GET_VBR_CONSTRAINT_REQUEST 4021
00150 #define OPUS_SET_FORCE_CHANNELS_REQUEST 4022
00151 #define OPUS_GET_FORCE_CHANNELS_REQUEST 4023
00152 #define OPUS_SET_SIGNAL_REQUEST 4024
00153 #define OPUS_GET_SIGNAL_REQUEST 4025
00154 #define OPUS_GET_LOOKAHEAD_REQUEST 4027
00155 /* #define OPUS_RESET_STATE 4028 */
00156 #define OPUS_GET_SAMPLE_RATE_REQUEST 4029
00157 #define OPUS_GET_FINAL_RANGE_REQUEST 4031
00158 #define OPUS_GET_PITCH_REQUEST 4033
00159 #define OPUS_SET_GAIN_REQUEST 4034
00160 #define OPUS_GET_GAIN_REQUEST 4045 /* Should have been 4035 */
00161 #define OPUS_SET_LSB_DEPTH_REQUEST 4036

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.6 opus_defines.h 115

00162 #define OPUS_GET_LSB_DEPTH_REQUEST 4037
00163 #define OPUS_GET_LAST_PACKET_DURATION_REQUEST 4039
00164 #define OPUS_SET_EXPERT_FRAME_DURATION_REQUEST 4040
00165 #define OPUS_GET_EXPERT_FRAME_DURATION_REQUEST 4041
00166 #define OPUS_SET_PREDICTION_DISABLED_REQUEST 4042
00167 #define OPUS_GET_PREDICTION_DISABLED_REQUEST 4043
00168 /* Don’t use 4045, it’s already taken by OPUS_GET_GAIN_REQUEST */
00169 #define OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST 4046
00170 #define OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST 4047
00171 #define OPUS_GET_IN_DTX_REQUEST 4049
00172 #define OPUS_SET_DRED_DURATION_REQUEST 4050
00173 #define OPUS_GET_DRED_DURATION_REQUEST 4051
00174 #define OPUS_SET_DNN_BLOB_REQUEST 4052
00175 /*#define OPUS_GET_DNN_BLOB_REQUEST 4053 */
00176 #define OPUS_SET_OSCE_BWE_REQUEST 4054
00177 #define OPUS_GET_OSCE_BWE_REQUEST 4055
00178 #define OPUS_SET_QEXT_REQUEST 4056
00179 #define OPUS_GET_QEXT_REQUEST 4057
00180 #define OPUS_SET_IGNORE_EXTENSIONS_REQUEST 4058
00181 #define OPUS_GET_IGNORE_EXTENSIONS_REQUEST 4059
00182
00184 #define OPUS_HAVE_OPUS_PROJECTION_H
00185
00186 /* Macros to trigger compilation errors when the wrong types are provided to a CTL */
00187 #define opus_check_int(x) (((void)((x) == (opus_int32)0)), (opus_int32)(x))
00188
00189 #ifdef DISABLE_PTR_CHECK
00190 /* Disable checks to prevent ubsan from complaining about NULL checks
00191 in test_opus_api. */
00192 #define opus_check_int_ptr(ptr) (ptr)
00193 #define opus_check_uint_ptr(ptr) (ptr)
00194 #define opus_check_uint8_ptr(ptr) (ptr)
00195 #define opus_check_val16_ptr(ptr) (ptr)
00196 #define opus_check_void_ptr(ptr) (ptr)
00197 #else
00198 #define opus_check_int_ptr(ptr) ((ptr) + ((ptr) - (opus_int32*)(ptr)))
00199 #define opus_check_uint_ptr(ptr) ((ptr) + ((ptr) - (opus_uint32*)(ptr)))
00200 #define opus_check_uint8_ptr(ptr) ((ptr) + ((ptr) - (opus_uint8*)(ptr)))
00201 #define opus_check_val16_ptr(ptr) ((ptr) + ((ptr) - (opus_val16*)(ptr)))
00202 #define opus_check_void_ptr(x) ((void)((void *)0 == (x)), (x))
00203 #endif
00210 /* Values for the various encoder CTLs */
00211 #define OPUS_AUTO -1000
00212 #define OPUS_BITRATE_MAX -1
00216 #define OPUS_APPLICATION_VOIP 2048
00219 #define OPUS_APPLICATION_AUDIO 2049
00222 #define OPUS_APPLICATION_RESTRICTED_LOWDELAY 2051
00224 #define OPUS_APPLICATION_RESTRICTED_SILK 2052
00226 #define OPUS_APPLICATION_RESTRICTED_CELT 2053
00227
00228 #define OPUS_SIGNAL_VOICE 3001
00229 #define OPUS_SIGNAL_MUSIC 3002
00230 #define OPUS_BANDWIDTH_NARROWBAND 1101
00231 #define OPUS_BANDWIDTH_MEDIUMBAND 1102
00232 #define OPUS_BANDWIDTH_WIDEBAND 1103
00233 #define OPUS_BANDWIDTH_SUPERWIDEBAND 1104
00234 #define OPUS_BANDWIDTH_FULLBAND 1105
00236 #define OPUS_FRAMESIZE_ARG 5000
00237 #define OPUS_FRAMESIZE_2_5_MS 5001
00238 #define OPUS_FRAMESIZE_5_MS 5002
00239 #define OPUS_FRAMESIZE_10_MS 5003
00240 #define OPUS_FRAMESIZE_20_MS 5004
00241 #define OPUS_FRAMESIZE_40_MS 5005
00242 #define OPUS_FRAMESIZE_60_MS 5006
00243 #define OPUS_FRAMESIZE_80_MS 5007
00244 #define OPUS_FRAMESIZE_100_MS 5008
00245 #define OPUS_FRAMESIZE_120_MS 5009
00280 #define OPUS_SET_COMPLEXITY(x) OPUS_SET_COMPLEXITY_REQUEST, opus_check_int(x)
00286 #define OPUS_GET_COMPLEXITY(x) OPUS_GET_COMPLEXITY_REQUEST, opus_check_int_ptr(x)
00287
00299 #define OPUS_SET_BITRATE(x) OPUS_SET_BITRATE_REQUEST, opus_check_int(x)
00307 #define OPUS_GET_BITRATE(x) OPUS_GET_BITRATE_REQUEST, opus_check_int_ptr(x)
00308
00322 #define OPUS_SET_VBR(x) OPUS_SET_VBR_REQUEST, opus_check_int(x)
00333 #define OPUS_GET_VBR(x) OPUS_GET_VBR_REQUEST, opus_check_int_ptr(x)
00334
00351 #define OPUS_SET_VBR_CONSTRAINT(x) OPUS_SET_VBR_CONSTRAINT_REQUEST, opus_check_int(x)
00361 #define OPUS_GET_VBR_CONSTRAINT(x) OPUS_GET_VBR_CONSTRAINT_REQUEST, opus_check_int_ptr(x)
00362
00376 #define OPUS_SET_FORCE_CHANNELS(x) OPUS_SET_FORCE_CHANNELS_REQUEST, opus_check_int(x)
00386 #define OPUS_GET_FORCE_CHANNELS(x) OPUS_GET_FORCE_CHANNELS_REQUEST, opus_check_int_ptr(x)

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

116 File Documentation

00387
00404 #define OPUS_SET_MAX_BANDWIDTH(x) OPUS_SET_MAX_BANDWIDTH_REQUEST, opus_check_int(x)
00405
00417 #define OPUS_GET_MAX_BANDWIDTH(x) OPUS_GET_MAX_BANDWIDTH_REQUEST, opus_check_int_ptr(x)
00418
00436 #define OPUS_SET_BANDWIDTH(x) OPUS_SET_BANDWIDTH_REQUEST, opus_check_int(x)
00437
00448 #define OPUS_SET_SIGNAL(x) OPUS_SET_SIGNAL_REQUEST, opus_check_int(x)
00458 #define OPUS_GET_SIGNAL(x) OPUS_GET_SIGNAL_REQUEST, opus_check_int_ptr(x)
00459
00460
00475 #define OPUS_SET_APPLICATION(x) OPUS_SET_APPLICATION_REQUEST, opus_check_int(x)
00489 #define OPUS_GET_APPLICATION(x) OPUS_GET_APPLICATION_REQUEST, opus_check_int_ptr(x)
00490
00504 #define OPUS_GET_LOOKAHEAD(x) OPUS_GET_LOOKAHEAD_REQUEST, opus_check_int_ptr(x)
00505
00516 #define OPUS_SET_INBAND_FEC(x) OPUS_SET_INBAND_FEC_REQUEST, opus_check_int(x)
00526 #define OPUS_GET_INBAND_FEC(x) OPUS_GET_INBAND_FEC_REQUEST, opus_check_int_ptr(x)
00527
00535 #define OPUS_SET_PACKET_LOSS_PERC(x) OPUS_SET_PACKET_LOSS_PERC_REQUEST, opus_check_int(x)
00541 #define OPUS_GET_PACKET_LOSS_PERC(x) OPUS_GET_PACKET_LOSS_PERC_REQUEST, opus_check_int_ptr(x)
00542
00552 #define OPUS_SET_DTX(x) OPUS_SET_DTX_REQUEST, opus_check_int(x)
00561 #define OPUS_GET_DTX(x) OPUS_GET_DTX_REQUEST, opus_check_int_ptr(x)
00580 #define OPUS_SET_LSB_DEPTH(x) OPUS_SET_LSB_DEPTH_REQUEST, opus_check_int(x)
00586 #define OPUS_GET_LSB_DEPTH(x) OPUS_GET_LSB_DEPTH_REQUEST, opus_check_int_ptr(x)
00587
00611 #define OPUS_SET_EXPERT_FRAME_DURATION(x) OPUS_SET_EXPERT_FRAME_DURATION_REQUEST, opus_check_int(x)
00628 #define OPUS_GET_EXPERT_FRAME_DURATION(x) OPUS_GET_EXPERT_FRAME_DURATION_REQUEST, opus_check_int_ptr(x)
00629
00639 #define OPUS_SET_PREDICTION_DISABLED(x) OPUS_SET_PREDICTION_DISABLED_REQUEST, opus_check_int(x)
00648 #define OPUS_GET_PREDICTION_DISABLED(x) OPUS_GET_PREDICTION_DISABLED_REQUEST, opus_check_int_ptr(x)
00649
00652 #define OPUS_SET_DRED_DURATION(x) OPUS_SET_DRED_DURATION_REQUEST, opus_check_int(x)
00655 #define OPUS_GET_DRED_DURATION(x) OPUS_GET_DRED_DURATION_REQUEST, opus_check_int_ptr(x)
00656
00659 #define OPUS_SET_DNN_BLOB(data, len) OPUS_SET_DNN_BLOB_REQUEST, opus_check_void_ptr(data),

opus_check_int(len)
00660
00664 #define OPUS_SET_QEXT(x) OPUS_SET_QEXT_REQUEST, opus_check_int(x)
00667 #define OPUS_GET_QEXT(x) OPUS_GET_QEXT_REQUEST, opus_check_int_ptr(x)
00668
00710 #define OPUS_RESET_STATE 4028
00711
00720 #define OPUS_GET_FINAL_RANGE(x) OPUS_GET_FINAL_RANGE_REQUEST, opus_check_uint_ptr(x)
00721
00734 #define OPUS_GET_BANDWIDTH(x) OPUS_GET_BANDWIDTH_REQUEST, opus_check_int_ptr(x)
00735
00742 #define OPUS_GET_SAMPLE_RATE(x) OPUS_GET_SAMPLE_RATE_REQUEST, opus_check_int_ptr(x)
00743
00757 #define OPUS_SET_PHASE_INVERSION_DISABLED(x) OPUS_SET_PHASE_INVERSION_DISABLED_REQUEST, opus_check_int(x)
00766 #define OPUS_GET_PHASE_INVERSION_DISABLED(x) OPUS_GET_PHASE_INVERSION_DISABLED_REQUEST,

opus_check_int_ptr(x)
00776 #define OPUS_GET_IN_DTX(x) OPUS_GET_IN_DTX_REQUEST, opus_check_int_ptr(x)
00777
00795 #define OPUS_SET_GAIN(x) OPUS_SET_GAIN_REQUEST, opus_check_int(x)
00800 #define OPUS_GET_GAIN(x) OPUS_GET_GAIN_REQUEST, opus_check_int_ptr(x)
00801
00805 #define OPUS_GET_LAST_PACKET_DURATION(x) OPUS_GET_LAST_PACKET_DURATION_REQUEST, opus_check_int_ptr(x)
00806
00817 #define OPUS_GET_PITCH(x) OPUS_GET_PITCH_REQUEST, opus_check_int_ptr(x)
00818
00824 #define OPUS_SET_OSCE_BWE(x) OPUS_SET_OSCE_BWE_REQUEST, opus_check_int(x)
00829 #define OPUS_GET_OSCE_BWE(x) OPUS_GET_OSCE_BWE_REQUEST, opus_check_int_ptr(x)
00830
00834 #define OPUS_SET_IGNORE_EXTENSIONS(x) OPUS_SET_IGNORE_EXTENSIONS_REQUEST, opus_check_int(x)
00837 #define OPUS_GET_IGNORE_EXTENSIONS(x) OPUS_GET_IGNORE_EXTENSIONS_REQUEST, opus_check_int_ptr(x)
00838
00850 OPUS_EXPORT const char *opus_strerror(int error);
00851
00860 OPUS_EXPORT const char *opus_get_version_string(void);
00863 #ifdef __cplusplus
00864 }
00865 #endif
00866
00867 #endif /* OPUS_DEFINES_H */

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.7 opus_multistream.h File Reference 117

5.7 opus_multistream.h File Reference

Opus reference implementation multistream API.

#include "opus.h"
Include dependency graph for opus_multistream.h:

opus_multistream.h

opus.h

opus_types.h

opus_defines.h

Macros

• #define OPUS_MULTISTREAM_GET_ENCODER_STATE(x, y)

Gets the encoder state for an individual stream of a multistream encoder.

• #define OPUS_MULTISTREAM_GET_DECODER_STATE(x, y)

Gets the decoder state for an individual stream of a multistream decoder.

Typedefs

• typedef struct OpusMSEncoder OpusMSEncoder

Opus multistream encoder state.

• typedef struct OpusMSDecoder OpusMSDecoder

Opus multistream decoder state.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

118 File Documentation

Functions

Multistream encoder functions

• opus_int32 opus_multistream_encoder_get_size (int streams, int coupled_streams)
Gets the size of an OpusMSEncoder structure.

• opus_int32 opus_multistream_surround_encoder_get_size (int channels, int mapping_family)
• OpusMSEncoder ∗ opus_multistream_encoder_create (opus_int32 Fs, int channels, int streams, int coupled←↩

_streams, const unsigned char ∗mapping, int application, int ∗error)
Allocates and initializes a multistream encoder state.

• OpusMSEncoder ∗ opus_multistream_surround_encoder_create (opus_int32 Fs, int channels, int mapping←↩

_family, int ∗streams, int ∗coupled_streams, unsigned char ∗mapping, int application, int ∗error)
• int opus_multistream_encoder_init (OpusMSEncoder ∗st, opus_int32 Fs, int channels, int streams, int

coupled_streams, const unsigned char ∗mapping, int application)
Initialize a previously allocated multistream encoder state.

• int opus_multistream_surround_encoder_init (OpusMSEncoder ∗st, opus_int32 Fs, int channels, int
mapping_family, int ∗streams, int ∗coupled_streams, unsigned char ∗mapping, int application)

• int opus_multistream_encode (OpusMSEncoder ∗st, const opus_int16 ∗pcm, int frame_size, unsigned char
∗data, opus_int32 max_data_bytes)

Encodes a multistream Opus frame.
• int opus_multistream_encode24 (OpusMSEncoder ∗st, const opus_int32 ∗pcm, int frame_size, unsigned char
∗data, opus_int32 max_data_bytes)

Encodes a multistream Opus frame.
• int opus_multistream_encode_float (OpusMSEncoder ∗st, const float ∗pcm, int frame_size, unsigned char
∗data, opus_int32 max_data_bytes)

Encodes a multistream Opus frame from floating point input.
• void opus_multistream_encoder_destroy (OpusMSEncoder ∗st)

Frees an OpusMSEncoder allocated by opus_multistream_encoder_create().
• int opus_multistream_encoder_ctl (OpusMSEncoder ∗st, int request,...)

Perform a CTL function on a multistream Opus encoder.

Multistream decoder functions

• opus_int32 opus_multistream_decoder_get_size (int streams, int coupled_streams)
Gets the size of an OpusMSDecoder structure.

• OpusMSDecoder ∗ opus_multistream_decoder_create (opus_int32 Fs, int channels, int streams, int coupled←↩

_streams, const unsigned char ∗mapping, int ∗error)
Allocates and initializes a multistream decoder state.

• int opus_multistream_decoder_init (OpusMSDecoder ∗st, opus_int32 Fs, int channels, int streams, int
coupled_streams, const unsigned char ∗mapping)

Initialize a previously allocated decoder state object.
• int opus_multistream_decode (OpusMSDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int16
∗pcm, int frame_size, int decode_fec)

Decode a multistream Opus packet.
• int opus_multistream_decode24 (OpusMSDecoder ∗st, const unsigned char ∗data, opus_int32 len, opus_int32
∗pcm, int frame_size, int decode_fec)

Decode a multistream Opus packet.
• int opus_multistream_decode_float (OpusMSDecoder ∗st, const unsigned char ∗data, opus_int32 len, float
∗pcm, int frame_size, int decode_fec)

Decode a multistream Opus packet with floating point output.
• int opus_multistream_decoder_ctl (OpusMSDecoder ∗st, int request,...)

Perform a CTL function on a multistream Opus decoder.
• void opus_multistream_decoder_destroy (OpusMSDecoder ∗st)

Frees an OpusMSDecoder allocated by opus_multistream_decoder_create().

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.8 opus_multistream.h 119

5.7.1 Detailed Description

Opus reference implementation multistream API.

5.8 opus_multistream.h

Go to the documentation of this file.
00001 /* Copyright (c) 2011 Xiph.Org Foundation
00002 Written by Jean-Marc Valin */
00003 /*
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions
00006 are met:
00007
00008 - Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 - Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in the
00013 documentation and/or other materials provided with the distribution.
00014
00015 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00016 ``AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00017 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00018 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
00019 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00020 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00021 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00022 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00023 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00024 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00025 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00026 */
00027
00033 #ifndef OPUS_MULTISTREAM_H
00034 #define OPUS_MULTISTREAM_H
00035
00036 #include "opus.h"
00037
00038 #ifdef __cplusplus
00039 extern "C" {
00040 #endif
00041
00047 #define opus_check_encstate_ptr(ptr) ((ptr) + ((ptr) - (OpusEncoder**)(ptr)))
00048 #define opus_check_decstate_ptr(ptr) ((ptr) + ((ptr) - (OpusDecoder**)(ptr)))
00055 #define OPUS_MULTISTREAM_GET_ENCODER_STATE_REQUEST 5120
00056 #define OPUS_MULTISTREAM_GET_DECODER_STATE_REQUEST 5122
00086 #define OPUS_MULTISTREAM_GET_ENCODER_STATE(x,y) OPUS_MULTISTREAM_GET_ENCODER_STATE_REQUEST,

opus_check_int(x), opus_check_encstate_ptr(y)
00087
00099 #define OPUS_MULTISTREAM_GET_DECODER_STATE(x,y) OPUS_MULTISTREAM_GET_DECODER_STATE_REQUEST,

opus_check_int(x), opus_check_decstate_ptr(y)
00100
00175 typedef struct OpusMSEncoder OpusMSEncoder;
00176
00183 typedef struct OpusMSDecoder OpusMSDecoder;
00184
00203 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_encoder_get_size(
00204 int streams,
00205 int coupled_streams
00206);
00207
00208 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_surround_encoder_get_size(
00209 int channels,
00210 int mapping_family
00211);
00212
00213
00257 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSEncoder *opus_multistream_encoder_create(
00258 opus_int32 Fs,
00259 int channels,
00260 int streams,
00261 int coupled_streams,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

120 File Documentation

00262 const unsigned char *mapping,
00263 int application,
00264 int *error
00265) OPUS_ARG_NONNULL(5);
00266
00267 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSEncoder *opus_multistream_surround_encoder_create(
00268 opus_int32 Fs,
00269 int channels,
00270 int mapping_family,
00271 int *streams,
00272 int *coupled_streams,
00273 unsigned char *mapping,
00274 int application,
00275 int *error
00276) OPUS_ARG_NONNULL(4) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6);
00277
00326 OPUS_EXPORT int opus_multistream_encoder_init(
00327 OpusMSEncoder *st,
00328 opus_int32 Fs,
00329 int channels,
00330 int streams,
00331 int coupled_streams,
00332 const unsigned char *mapping,
00333 int application
00334) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(6);
00335
00336 OPUS_EXPORT int opus_multistream_surround_encoder_init(
00337 OpusMSEncoder *st,
00338 opus_int32 Fs,
00339 int channels,
00340 int mapping_family,
00341 int *streams,
00342 int *coupled_streams,
00343 unsigned char *mapping,
00344 int application
00345) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(5) OPUS_ARG_NONNULL(6) OPUS_ARG_NONNULL(7);
00346
00377 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_encode(
00378 OpusMSEncoder *st,
00379 const opus_int16 *pcm,
00380 int frame_size,
00381 unsigned char *data,
00382 opus_int32 max_data_bytes
00383) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00384
00415 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_encode24(
00416 OpusMSEncoder *st,
00417 const opus_int32 *pcm,
00418 int frame_size,
00419 unsigned char *data,
00420 opus_int32 max_data_bytes
00421) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00422
00460 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_encode_float(
00461 OpusMSEncoder *st,
00462 const float *pcm,
00463 int frame_size,
00464 unsigned char *data,
00465 opus_int32 max_data_bytes
00466) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(2) OPUS_ARG_NONNULL(4);
00467
00472 OPUS_EXPORT void opus_multistream_encoder_destroy(OpusMSEncoder *st);
00473
00486 OPUS_EXPORT int opus_multistream_encoder_ctl(OpusMSEncoder *st, int request, ...) OPUS_ARG_NONNULL(1);
00487
00508 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT opus_int32 opus_multistream_decoder_get_size(
00509 int streams,
00510 int coupled_streams
00511);
00512
00542 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT OpusMSDecoder *opus_multistream_decoder_create(
00543 opus_int32 Fs,
00544 int channels,
00545 int streams,
00546 int coupled_streams,
00547 const unsigned char *mapping,
00548 int *error
00549) OPUS_ARG_NONNULL(5);
00550
00585 OPUS_EXPORT int opus_multistream_decoder_init(
00586 OpusMSDecoder *st,

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.9 opus_types.h File Reference 121

00587 opus_int32 Fs,
00588 int channels,
00589 int streams,
00590 int coupled_streams,
00591 const unsigned char *mapping
00592) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(6);
00593
00623 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_decode(
00624 OpusMSDecoder *st,
00625 const unsigned char *data,
00626 opus_int32 len,
00627 opus_int16 *pcm,
00628 int frame_size,
00629 int decode_fec
00630) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00631
00661 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_decode24(
00662 OpusMSDecoder *st,
00663 const unsigned char *data,
00664 opus_int32 len,
00665 opus_int32 *pcm,
00666 int frame_size,
00667 int decode_fec
00668) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00669
00699 OPUS_EXPORT OPUS_WARN_UNUSED_RESULT int opus_multistream_decode_float(
00700 OpusMSDecoder *st,
00701 const unsigned char *data,
00702 opus_int32 len,
00703 float *pcm,
00704 int frame_size,
00705 int decode_fec
00706) OPUS_ARG_NONNULL(1) OPUS_ARG_NONNULL(4);
00707
00720 OPUS_EXPORT int opus_multistream_decoder_ctl(OpusMSDecoder *st, int request, ...) OPUS_ARG_NONNULL(1);
00721
00726 OPUS_EXPORT void opus_multistream_decoder_destroy(OpusMSDecoder *st);
00727
00732 #ifdef __cplusplus
00733 }
00734 #endif
00735
00736 #endif /* OPUS_MULTISTREAM_H */

5.9 opus_types.h File Reference

Opus reference implementation types.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

122 File Documentation

This graph shows which files directly or indirectly include this file:

opus_types.h

opus.h

opus_defines.h

opus_multistream.h

opus_custom.h

Macros

• #define opus_int int /∗ used for counters etc; at least 16 bits ∗/
• #define opus_int64 long long
• #define opus_int8 signed char
• #define opus_uint unsigned int /∗ used for counters etc; at least 16 bits ∗/
• #define opus_uint64 unsigned long long
• #define opus_uint8 unsigned char

Typedefs

• typedef short opus_int16
• typedef unsigned short opus_uint16
• typedef int opus_int32
• typedef unsigned int opus_uint32

5.9.1 Detailed Description

Opus reference implementation types.

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.9 opus_types.h File Reference 123

5.9.2 Macro Definition Documentation

5.9.2.1 opus_int

#define opus_int int /∗ used for counters etc; at least 16 bits ∗/

5.9.2.2 opus_int64

#define opus_int64 long long

5.9.2.3 opus_int8

#define opus_int8 signed char

5.9.2.4 opus_uint

#define opus_uint unsigned int /∗ used for counters etc; at least 16 bits ∗/

5.9.2.5 opus_uint64

#define opus_uint64 unsigned long long

5.9.2.6 opus_uint8

#define opus_uint8 unsigned char

5.9.3 Typedef Documentation

5.9.3.1 opus_int16

typedef short opus_int16

5.9.3.2 opus_int32

typedef int opus_int32

5.9.3.3 opus_uint16

typedef unsigned short opus_uint16

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

124 File Documentation

5.9.3.4 opus_uint32

typedef unsigned int opus_uint32

5.10 opus_types.h

Go to the documentation of this file.
00001 /* (C) COPYRIGHT 1994-2002 Xiph.Org Foundation */
00002 /* Modified by Jean-Marc Valin */
00003 /*
00004 Redistribution and use in source and binary forms, with or without
00005 modification, are permitted provided that the following conditions
00006 are met:
00007
00008 - Redistributions of source code must retain the above copyright
00009 notice, this list of conditions and the following disclaimer.
00010
00011 - Redistributions in binary form must reproduce the above copyright
00012 notice, this list of conditions and the following disclaimer in the
00013 documentation and/or other materials provided with the distribution.
00014
00015 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00016 ``AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00017 LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00018 A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
00019 OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
00020 EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
00021 PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
00022 PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
00023 LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
00024 NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
00025 SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00026 */
00027 /* opus_types.h based on ogg_types.h from libogg */
00028
00033 #ifndef OPUS_TYPES_H
00034 #define OPUS_TYPES_H
00035
00036 #define opus_int int /* used for counters etc; at least 16 bits */
00037 #define opus_int64 long long
00038 #define opus_int8 signed char
00039
00040 #define opus_uint unsigned int /* used for counters etc; at least 16 bits */
00041 #define opus_uint64 unsigned long long
00042 #define opus_uint8 unsigned char
00043
00044 /* Use the real stdint.h if it’s there (taken from Paul Hsieh’s pstdint.h) */
00045 #if (defined(__STDC__) && __STDC__ && defined(__STDC_VERSION__) && __STDC_VERSION__ >= 199901L) ||

(defined(__GNUC__) && (defined(_STDINT_H) || defined(_STDINT_H_)) || defined (HAVE_STDINT_H))
00046 #include <stdint.h>
00047 # undef opus_int64
00048 # undef opus_int8
00049 # undef opus_uint64
00050 # undef opus_uint8
00051 typedef int8_t opus_int8;
00052 typedef uint8_t opus_uint8;
00053 typedef int16_t opus_int16;
00054 typedef uint16_t opus_uint16;
00055 typedef int32_t opus_int32;
00056 typedef uint32_t opus_uint32;
00057 typedef int64_t opus_int64;
00058 typedef uint64_t opus_uint64;
00059 #elif defined(_WIN32)
00060
00061 # if defined(__CYGWIN__)
00062 # include <_G_config.h>
00063 typedef _G_int32_t opus_int32;
00064 typedef _G_uint32_t opus_uint32;
00065 typedef _G_int16 opus_int16;
00066 typedef _G_uint16 opus_uint16;
00067 # elif defined(__MINGW32__)
00068 typedef short opus_int16;
00069 typedef unsigned short opus_uint16;

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

5.10 opus_types.h 125

00070 typedef int opus_int32;
00071 typedef unsigned int opus_uint32;
00072 # elif defined(__MWERKS__)
00073 typedef int opus_int32;
00074 typedef unsigned int opus_uint32;
00075 typedef short opus_int16;
00076 typedef unsigned short opus_uint16;
00077 # else
00078 /* MSVC/Borland */
00079 typedef __int32 opus_int32;
00080 typedef unsigned __int32 opus_uint32;
00081 typedef __int16 opus_int16;
00082 typedef unsigned __int16 opus_uint16;
00083 # endif
00084
00085 #elif defined(__MACOS__)
00086
00087 # include <sys/types.h>
00088 typedef SInt16 opus_int16;
00089 typedef UInt16 opus_uint16;
00090 typedef SInt32 opus_int32;
00091 typedef UInt32 opus_uint32;
00092
00093 #elif (defined(__APPLE__) && defined(__MACH__)) /* MacOS X Framework build */
00094
00095 # include <sys/types.h>
00096 typedef int16_t opus_int16;
00097 typedef u_int16_t opus_uint16;
00098 typedef int32_t opus_int32;
00099 typedef u_int32_t opus_uint32;
00100
00101 #elif defined(__BEOS__)
00102
00103 /* Be */
00104 # include <inttypes.h>
00105 typedef int16 opus_int16;
00106 typedef u_int16 opus_uint16;
00107 typedef int32_t opus_int32;
00108 typedef u_int32_t opus_uint32;
00109
00110 #elif defined (__EMX__)
00111
00112 /* OS/2 GCC */
00113 typedef short opus_int16;
00114 typedef unsigned short opus_uint16;
00115 typedef int opus_int32;
00116 typedef unsigned int opus_uint32;
00117
00118 #elif defined (DJGPP)
00119
00120 /* DJGPP */
00121 typedef short opus_int16;
00122 typedef unsigned short opus_uint16;
00123 typedef int opus_int32;
00124 typedef unsigned int opus_uint32;
00125
00126 #elif defined(R5900)
00127
00128 /* PS2 EE */
00129 typedef int opus_int32;
00130 typedef unsigned opus_uint32;
00131 typedef short opus_int16;
00132 typedef unsigned short opus_uint16;
00133
00134 #elif defined(__SYMBIAN32__)
00135
00136 /* Symbian GCC */
00137 typedef signed short opus_int16;
00138 typedef unsigned short opus_uint16;
00139 typedef signed int opus_int32;
00140 typedef unsigned int opus_uint32;
00141
00142 #elif defined(CONFIG_TI_C54X) || defined (CONFIG_TI_C55X)
00143
00144 typedef short opus_int16;
00145 typedef unsigned short opus_uint16;
00146 typedef long opus_int32;
00147 typedef unsigned long opus_uint32;
00148
00149 #elif defined(CONFIG_TI_C6X)
00150

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

126 File Documentation

00151 typedef short opus_int16;
00152 typedef unsigned short opus_uint16;
00153 typedef int opus_int32;
00154 typedef unsigned int opus_uint32;
00155
00156 #else
00157
00158 /* Give up, take a reasonable guess */
00159 typedef short opus_int16;
00160 typedef unsigned short opus_uint16;
00161 typedef int opus_int32;
00162 typedef unsigned int opus_uint32;
00163
00164 #endif
00165
00166 #endif /* OPUS_TYPES_H */

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

Index

Decoder related CTLs, 68
OPUS_GET_GAIN, 69
OPUS_GET_IGNORE_EXTENSIONS, 69
OPUS_GET_LAST_PACKET_DURATION, 69
OPUS_GET_OSCE_BWE, 70
OPUS_GET_PITCH, 70
OPUS_SET_GAIN, 70
OPUS_SET_IGNORE_EXTENSIONS, 71
OPUS_SET_OSCE_BWE, 71

Encoder related CTLs, 46
OPUS_GET_APPLICATION, 49
OPUS_GET_BITRATE, 49
OPUS_GET_COMPLEXITY, 49
OPUS_GET_DRED_DURATION, 50
OPUS_GET_DTX, 50
OPUS_GET_EXPERT_FRAME_DURATION, 50
OPUS_GET_FORCE_CHANNELS, 51
OPUS_GET_INBAND_FEC, 51
OPUS_GET_LOOKAHEAD, 52
OPUS_GET_LSB_DEPTH, 52
OPUS_GET_MAX_BANDWIDTH, 53
OPUS_GET_PACKET_LOSS_PERC, 53
OPUS_GET_PREDICTION_DISABLED, 53
OPUS_GET_QEXT, 54
OPUS_GET_SIGNAL, 54
OPUS_GET_VBR, 55
OPUS_GET_VBR_CONSTRAINT, 55
OPUS_SET_APPLICATION, 55
OPUS_SET_BANDWIDTH, 56
OPUS_SET_BITRATE, 57
OPUS_SET_COMPLEXITY, 57
OPUS_SET_DNN_BLOB, 57
OPUS_SET_DRED_DURATION, 57
OPUS_SET_DTX, 58
OPUS_SET_EXPERT_FRAME_DURATION, 58
OPUS_SET_FORCE_CHANNELS, 59
OPUS_SET_INBAND_FEC, 59
OPUS_SET_LSB_DEPTH, 60
OPUS_SET_MAX_BANDWIDTH, 61
OPUS_SET_PACKET_LOSS_PERC, 61
OPUS_SET_PREDICTION_DISABLED, 62
OPUS_SET_QEXT, 62
OPUS_SET_SIGNAL, 62
OPUS_SET_VBR, 63
OPUS_SET_VBR_CONSTRAINT, 63

Error codes, 40
OPUS_ALLOC_FAIL, 40
OPUS_BAD_ARG, 40
OPUS_BUFFER_TOO_SMALL, 41
OPUS_INTERNAL_ERROR, 41
OPUS_INVALID_PACKET, 41
OPUS_INVALID_STATE, 41
OPUS_OK, 41
OPUS_UNIMPLEMENTED, 41

Generic CTLs, 65
OPUS_GET_BANDWIDTH, 66
OPUS_GET_FINAL_RANGE, 66
OPUS_GET_IN_DTX, 66
OPUS_GET_PHASE_INVERSION_DISABLED, 67
OPUS_GET_SAMPLE_RATE, 67
OPUS_RESET_STATE, 68
OPUS_SET_PHASE_INVERSION_DISABLED, 68

Multistream specific encoder and decoder CTLs, 72
OPUS_MULTISTREAM_GET_DECODER_STATE,

73
OPUS_MULTISTREAM_GET_ENCODER_STATE,

73

Opus, 1
Opus Custom, 86

opus_custom_decode, 89
opus_custom_decode24, 89
opus_custom_decode_float, 90
opus_custom_decoder_create, 90
opus_custom_decoder_ctl, 91
opus_custom_decoder_destroy, 91
opus_custom_decoder_get_size, 91
opus_custom_decoder_init, 92
opus_custom_encode, 92
opus_custom_encode24, 93
opus_custom_encode_float, 93
opus_custom_encoder_create, 94
opus_custom_encoder_ctl, 94
opus_custom_encoder_destroy, 95
opus_custom_encoder_get_size, 95
opus_custom_mode_create, 95
opus_custom_mode_destroy, 96
OpusCustomDecoder, 88
OpusCustomEncoder, 88

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

128 INDEX

OpusCustomMode, 88
Opus Decoder, 14

opus_decode, 17
opus_decode24, 18
opus_decode_float, 18
opus_decoder_create, 19
opus_decoder_ctl, 19
opus_decoder_destroy, 20
opus_decoder_dred_decode, 20
opus_decoder_dred_decode24, 21
opus_decoder_dred_decode_float, 21
opus_decoder_get_nb_samples, 22
opus_decoder_get_size, 22
opus_decoder_init, 23
opus_dred_alloc, 23
opus_dred_decoder_create, 24
opus_dred_decoder_ctl, 24
opus_dred_decoder_destroy, 24
opus_dred_decoder_get_size, 25
opus_dred_decoder_init, 25
opus_dred_free, 25
opus_dred_get_size, 25
opus_dred_parse, 26
opus_dred_process, 26
opus_packet_get_bandwidth, 27
opus_packet_get_nb_channels, 27
opus_packet_get_nb_frames, 28
opus_packet_get_nb_samples, 28
opus_packet_get_samples_per_frame, 29
opus_packet_has_lbrr, 29
opus_packet_parse, 30
opus_pcm_soft_clip, 30
OpusDecoder, 16
OpusDRED, 16
OpusDREDDecoder, 17

Opus Encoder, 7
opus_encode, 9
opus_encode24, 9
opus_encode_float, 10
opus_encoder_create, 11
opus_encoder_ctl, 12
opus_encoder_destroy, 12
opus_encoder_get_size, 12
opus_encoder_init, 13
OpusEncoder, 9

Opus library information functions, 71
opus_get_version_string, 71
opus_strerror, 72

Opus Multistream API, 73
opus_multistream_decode, 76
opus_multistream_decode24, 77
opus_multistream_decode_float, 77
opus_multistream_decoder_create, 78
opus_multistream_decoder_ctl, 78

opus_multistream_decoder_destroy, 79
opus_multistream_decoder_get_size, 79
opus_multistream_decoder_init, 80
opus_multistream_encode, 81
opus_multistream_encode24, 81
opus_multistream_encode_float, 82
opus_multistream_encoder_create, 83
opus_multistream_encoder_ctl, 83
opus_multistream_encoder_destroy, 84
opus_multistream_encoder_get_size, 84
opus_multistream_encoder_init, 85
opus_multistream_surround_encoder_create, 86
opus_multistream_surround_encoder_get_size, 86
opus_multistream_surround_encoder_init, 86
OpusMSDecoder, 76
OpusMSEncoder, 76

opus.h, 97, 101
OPUS_ALLOC_FAIL

Error codes, 40
OPUS_APPLICATION_AUDIO

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_RESTRICTED_CELT

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_RESTRICTED_LOWDELAY

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_RESTRICTED_SILK

Pre-defined values for CTL interface, 43
OPUS_APPLICATION_VOIP

Pre-defined values for CTL interface, 43
OPUS_AUTO

Pre-defined values for CTL interface, 44
OPUS_BAD_ARG

Error codes, 40
OPUS_BANDWIDTH_FULLBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_MEDIUMBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_NARROWBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_SUPERWIDEBAND

Pre-defined values for CTL interface, 44
OPUS_BANDWIDTH_WIDEBAND

Pre-defined values for CTL interface, 44
OPUS_BITRATE_MAX

Pre-defined values for CTL interface, 44
OPUS_BUFFER_TOO_SMALL

Error codes, 41
opus_custom.h, 104, 106

OPUS_CUSTOM_EXPORT, 106
OPUS_CUSTOM_EXPORT_STATIC, 106

opus_custom_decode
Opus Custom, 89

opus_custom_decode24
Opus Custom, 89

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

INDEX 129

opus_custom_decode_float
Opus Custom, 90

opus_custom_decoder_create
Opus Custom, 90

opus_custom_decoder_ctl
Opus Custom, 91

opus_custom_decoder_destroy
Opus Custom, 91

opus_custom_decoder_get_size
Opus Custom, 91

opus_custom_decoder_init
Opus Custom, 92

opus_custom_encode
Opus Custom, 92

opus_custom_encode24
Opus Custom, 93

opus_custom_encode_float
Opus Custom, 93

opus_custom_encoder_create
Opus Custom, 94

opus_custom_encoder_ctl
Opus Custom, 94

opus_custom_encoder_destroy
Opus Custom, 95

opus_custom_encoder_get_size
Opus Custom, 95

OPUS_CUSTOM_EXPORT
opus_custom.h, 106

OPUS_CUSTOM_EXPORT_STATIC
opus_custom.h, 106

opus_custom_mode_create
Opus Custom, 95

opus_custom_mode_destroy
Opus Custom, 96

opus_decode
Opus Decoder, 17

opus_decode24
Opus Decoder, 18

opus_decode_float
Opus Decoder, 18

opus_decoder_create
Opus Decoder, 19

opus_decoder_ctl
Opus Decoder, 19

opus_decoder_destroy
Opus Decoder, 20

opus_decoder_dred_decode
Opus Decoder, 20

opus_decoder_dred_decode24
Opus Decoder, 21

opus_decoder_dred_decode_float
Opus Decoder, 21

opus_decoder_get_nb_samples
Opus Decoder, 22

opus_decoder_get_size
Opus Decoder, 22

opus_decoder_init
Opus Decoder, 23

opus_defines.h, 108, 113
opus_dred_alloc

Opus Decoder, 23
opus_dred_decoder_create

Opus Decoder, 24
opus_dred_decoder_ctl

Opus Decoder, 24
opus_dred_decoder_destroy

Opus Decoder, 24
opus_dred_decoder_get_size

Opus Decoder, 25
opus_dred_decoder_init

Opus Decoder, 25
opus_dred_free

Opus Decoder, 25
opus_dred_get_size

Opus Decoder, 25
opus_dred_parse

Opus Decoder, 26
opus_dred_process

Opus Decoder, 26
opus_encode

Opus Encoder, 9
opus_encode24

Opus Encoder, 9
opus_encode_float

Opus Encoder, 10
opus_encoder_create

Opus Encoder, 11
opus_encoder_ctl

Opus Encoder, 12
opus_encoder_destroy

Opus Encoder, 12
opus_encoder_get_size

Opus Encoder, 12
opus_encoder_init

Opus Encoder, 13
OPUS_FRAMESIZE_100_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_10_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_120_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_20_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_2_5_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_40_MS

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_5_MS

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

130 INDEX

Pre-defined values for CTL interface, 45
OPUS_FRAMESIZE_60_MS

Pre-defined values for CTL interface, 46
OPUS_FRAMESIZE_80_MS

Pre-defined values for CTL interface, 46
OPUS_FRAMESIZE_ARG

Pre-defined values for CTL interface, 46
OPUS_GET_APPLICATION

Encoder related CTLs, 49
OPUS_GET_BANDWIDTH

Generic CTLs, 66
OPUS_GET_BITRATE

Encoder related CTLs, 49
OPUS_GET_COMPLEXITY

Encoder related CTLs, 49
OPUS_GET_DRED_DURATION

Encoder related CTLs, 50
OPUS_GET_DTX

Encoder related CTLs, 50
OPUS_GET_EXPERT_FRAME_DURATION

Encoder related CTLs, 50
OPUS_GET_FINAL_RANGE

Generic CTLs, 66
OPUS_GET_FORCE_CHANNELS

Encoder related CTLs, 51
OPUS_GET_GAIN

Decoder related CTLs, 69
OPUS_GET_IGNORE_EXTENSIONS

Decoder related CTLs, 69
OPUS_GET_IN_DTX

Generic CTLs, 66
OPUS_GET_INBAND_FEC

Encoder related CTLs, 51
OPUS_GET_LAST_PACKET_DURATION

Decoder related CTLs, 69
OPUS_GET_LOOKAHEAD

Encoder related CTLs, 52
OPUS_GET_LSB_DEPTH

Encoder related CTLs, 52
OPUS_GET_MAX_BANDWIDTH

Encoder related CTLs, 53
OPUS_GET_OSCE_BWE

Decoder related CTLs, 70
OPUS_GET_PACKET_LOSS_PERC

Encoder related CTLs, 53
OPUS_GET_PHASE_INVERSION_DISABLED

Generic CTLs, 67
OPUS_GET_PITCH

Decoder related CTLs, 70
OPUS_GET_PREDICTION_DISABLED

Encoder related CTLs, 53
OPUS_GET_QEXT

Encoder related CTLs, 54
OPUS_GET_SAMPLE_RATE

Generic CTLs, 67
OPUS_GET_SIGNAL

Encoder related CTLs, 54
OPUS_GET_VBR

Encoder related CTLs, 55
OPUS_GET_VBR_CONSTRAINT

Encoder related CTLs, 55
opus_get_version_string

Opus library information functions, 71
opus_int

opus_types.h, 123
opus_int16

opus_types.h, 123
opus_int32

opus_types.h, 123
opus_int64

opus_types.h, 123
opus_int8

opus_types.h, 123
OPUS_INTERNAL_ERROR

Error codes, 41
OPUS_INVALID_PACKET

Error codes, 41
OPUS_INVALID_STATE

Error codes, 41
opus_multistream.h, 117, 119
opus_multistream_decode

Opus Multistream API, 76
opus_multistream_decode24

Opus Multistream API, 77
opus_multistream_decode_float

Opus Multistream API, 77
opus_multistream_decoder_create

Opus Multistream API, 78
opus_multistream_decoder_ctl

Opus Multistream API, 78
opus_multistream_decoder_destroy

Opus Multistream API, 79
opus_multistream_decoder_get_size

Opus Multistream API, 79
opus_multistream_decoder_init

Opus Multistream API, 80
opus_multistream_encode

Opus Multistream API, 81
opus_multistream_encode24

Opus Multistream API, 81
opus_multistream_encode_float

Opus Multistream API, 82
opus_multistream_encoder_create

Opus Multistream API, 83
opus_multistream_encoder_ctl

Opus Multistream API, 83
opus_multistream_encoder_destroy

Opus Multistream API, 84

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

INDEX 131

opus_multistream_encoder_get_size
Opus Multistream API, 84

opus_multistream_encoder_init
Opus Multistream API, 85

OPUS_MULTISTREAM_GET_DECODER_STATE
Multistream specific encoder and decoder CTLs, 73

OPUS_MULTISTREAM_GET_ENCODER_STATE
Multistream specific encoder and decoder CTLs, 73

opus_multistream_packet_pad
Repacketizer, 33

opus_multistream_packet_unpad
Repacketizer, 34

opus_multistream_surround_encoder_create
Opus Multistream API, 86

opus_multistream_surround_encoder_get_size
Opus Multistream API, 86

opus_multistream_surround_encoder_init
Opus Multistream API, 86

OPUS_OK
Error codes, 41

opus_packet_get_bandwidth
Opus Decoder, 27

opus_packet_get_nb_channels
Opus Decoder, 27

opus_packet_get_nb_frames
Opus Decoder, 28

opus_packet_get_nb_samples
Opus Decoder, 28

opus_packet_get_samples_per_frame
Opus Decoder, 29

opus_packet_has_lbrr
Opus Decoder, 29

opus_packet_pad
Repacketizer, 35

opus_packet_parse
Opus Decoder, 30

opus_packet_unpad
Repacketizer, 35

opus_pcm_soft_clip
Opus Decoder, 30

opus_repacketizer_cat
Repacketizer, 36

opus_repacketizer_create
Repacketizer, 37

opus_repacketizer_destroy
Repacketizer, 37

opus_repacketizer_get_nb_frames
Repacketizer, 37

opus_repacketizer_get_size
Repacketizer, 38

opus_repacketizer_init
Repacketizer, 38

opus_repacketizer_out
Repacketizer, 38

opus_repacketizer_out_range
Repacketizer, 39

OPUS_RESET_STATE
Generic CTLs, 68

OPUS_SET_APPLICATION
Encoder related CTLs, 55

OPUS_SET_BANDWIDTH
Encoder related CTLs, 56

OPUS_SET_BITRATE
Encoder related CTLs, 57

OPUS_SET_COMPLEXITY
Encoder related CTLs, 57

OPUS_SET_DNN_BLOB
Encoder related CTLs, 57

OPUS_SET_DRED_DURATION
Encoder related CTLs, 57

OPUS_SET_DTX
Encoder related CTLs, 58

OPUS_SET_EXPERT_FRAME_DURATION
Encoder related CTLs, 58

OPUS_SET_FORCE_CHANNELS
Encoder related CTLs, 59

OPUS_SET_GAIN
Decoder related CTLs, 70

OPUS_SET_IGNORE_EXTENSIONS
Decoder related CTLs, 71

OPUS_SET_INBAND_FEC
Encoder related CTLs, 59

OPUS_SET_LSB_DEPTH
Encoder related CTLs, 60

OPUS_SET_MAX_BANDWIDTH
Encoder related CTLs, 61

OPUS_SET_OSCE_BWE
Decoder related CTLs, 71

OPUS_SET_PACKET_LOSS_PERC
Encoder related CTLs, 61

OPUS_SET_PHASE_INVERSION_DISABLED
Generic CTLs, 68

OPUS_SET_PREDICTION_DISABLED
Encoder related CTLs, 62

OPUS_SET_QEXT
Encoder related CTLs, 62

OPUS_SET_SIGNAL
Encoder related CTLs, 62

OPUS_SET_VBR
Encoder related CTLs, 63

OPUS_SET_VBR_CONSTRAINT
Encoder related CTLs, 63

OPUS_SIGNAL_MUSIC
Pre-defined values for CTL interface, 46

OPUS_SIGNAL_VOICE
Pre-defined values for CTL interface, 46

opus_strerror
Opus library information functions, 72

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

132 INDEX

opus_types.h, 121, 124
opus_int, 123
opus_int16, 123
opus_int32, 123
opus_int64, 123
opus_int8, 123
opus_uint, 123
opus_uint16, 123
opus_uint32, 123
opus_uint64, 123
opus_uint8, 123

opus_uint
opus_types.h, 123

opus_uint16
opus_types.h, 123

opus_uint32
opus_types.h, 123

opus_uint64
opus_types.h, 123

opus_uint8
opus_types.h, 123

OPUS_UNIMPLEMENTED
Error codes, 41

OpusCustomDecoder
Opus Custom, 88

OpusCustomEncoder
Opus Custom, 88

OpusCustomMode
Opus Custom, 88

OpusDecoder
Opus Decoder, 16

OpusDRED
Opus Decoder, 16

OpusDREDDecoder
Opus Decoder, 17

OpusEncoder
Opus Encoder, 9

OpusMSDecoder
Opus Multistream API, 76

OpusMSEncoder
Opus Multistream API, 76

OpusRepacketizer
Repacketizer, 33

Pre-defined values for CTL interface, 42
OPUS_APPLICATION_AUDIO, 43
OPUS_APPLICATION_RESTRICTED_CELT, 43
OPUS_APPLICATION_RESTRICTED_LOWDELAY,

43
OPUS_APPLICATION_RESTRICTED_SILK, 43
OPUS_APPLICATION_VOIP, 43
OPUS_AUTO, 44
OPUS_BANDWIDTH_FULLBAND, 44
OPUS_BANDWIDTH_MEDIUMBAND, 44

OPUS_BANDWIDTH_NARROWBAND, 44
OPUS_BANDWIDTH_SUPERWIDEBAND, 44
OPUS_BANDWIDTH_WIDEBAND, 44
OPUS_BITRATE_MAX, 44
OPUS_FRAMESIZE_100_MS, 45
OPUS_FRAMESIZE_10_MS, 45
OPUS_FRAMESIZE_120_MS, 45
OPUS_FRAMESIZE_20_MS, 45
OPUS_FRAMESIZE_2_5_MS, 45
OPUS_FRAMESIZE_40_MS, 45
OPUS_FRAMESIZE_5_MS, 45
OPUS_FRAMESIZE_60_MS, 46
OPUS_FRAMESIZE_80_MS, 46
OPUS_FRAMESIZE_ARG, 46
OPUS_SIGNAL_MUSIC, 46
OPUS_SIGNAL_VOICE, 46

Repacketizer, 31
opus_multistream_packet_pad, 33
opus_multistream_packet_unpad, 34
opus_packet_pad, 35
opus_packet_unpad, 35
opus_repacketizer_cat, 36
opus_repacketizer_create, 37
opus_repacketizer_destroy, 37
opus_repacketizer_get_nb_frames, 37
opus_repacketizer_get_size, 38
opus_repacketizer_init, 38
opus_repacketizer_out, 38
opus_repacketizer_out_range, 39
OpusRepacketizer, 33

Generated on Mon Dec 15 2025 12:54:10 for Opus by Doxygen

	1 Opus
	2 Topic Index
	2.1 Topics

	3 File Index
	3.1 File List

	4 Topic Documentation
	4.1 Opus Encoder
	4.1.1 Detailed Description
	4.1.2 Typedef Documentation
	4.1.2.1 OpusEncoder

	4.1.3 Function Documentation
	4.1.3.1 opus_encode()
	4.1.3.2 opus_encode24()
	4.1.3.3 opus_encode_float()
	4.1.3.4 opus_encoder_create()
	4.1.3.5 opus_encoder_ctl()
	4.1.3.6 opus_encoder_destroy()
	4.1.3.7 opus_encoder_get_size()
	4.1.3.8 opus_encoder_init()

	4.2 Opus Decoder
	4.2.1 Detailed Description
	4.2.2 Typedef Documentation
	4.2.2.1 OpusDecoder
	4.2.2.2 OpusDRED
	4.2.2.3 OpusDREDDecoder

	4.2.3 Function Documentation
	4.2.3.1 opus_decode()
	4.2.3.2 opus_decode24()
	4.2.3.3 opus_decode_float()
	4.2.3.4 opus_decoder_create()
	4.2.3.5 opus_decoder_ctl()
	4.2.3.6 opus_decoder_destroy()
	4.2.3.7 opus_decoder_dred_decode()
	4.2.3.8 opus_decoder_dred_decode24()
	4.2.3.9 opus_decoder_dred_decode_float()
	4.2.3.10 opus_decoder_get_nb_samples()
	4.2.3.11 opus_decoder_get_size()
	4.2.3.12 opus_decoder_init()
	4.2.3.13 opus_dred_alloc()
	4.2.3.14 opus_dred_decoder_create()
	4.2.3.15 opus_dred_decoder_ctl()
	4.2.3.16 opus_dred_decoder_destroy()
	4.2.3.17 opus_dred_decoder_get_size()
	4.2.3.18 opus_dred_decoder_init()
	4.2.3.19 opus_dred_free()
	4.2.3.20 opus_dred_get_size()
	4.2.3.21 opus_dred_parse()
	4.2.3.22 opus_dred_process()
	4.2.3.23 opus_packet_get_bandwidth()
	4.2.3.24 opus_packet_get_nb_channels()
	4.2.3.25 opus_packet_get_nb_frames()
	4.2.3.26 opus_packet_get_nb_samples()
	4.2.3.27 opus_packet_get_samples_per_frame()
	4.2.3.28 opus_packet_has_lbrr()
	4.2.3.29 opus_packet_parse()
	4.2.3.30 opus_pcm_soft_clip()

	4.3 Repacketizer
	4.3.1 Detailed Description
	4.3.2 Typedef Documentation
	4.3.2.1 OpusRepacketizer

	4.3.3 Function Documentation
	4.3.3.1 opus_multistream_packet_pad()
	4.3.3.2 opus_multistream_packet_unpad()
	4.3.3.3 opus_packet_pad()
	4.3.3.4 opus_packet_unpad()
	4.3.3.5 opus_repacketizer_cat()
	4.3.3.6 opus_repacketizer_create()
	4.3.3.7 opus_repacketizer_destroy()
	4.3.3.8 opus_repacketizer_get_nb_frames()
	4.3.3.9 opus_repacketizer_get_size()
	4.3.3.10 opus_repacketizer_init()
	4.3.3.11 opus_repacketizer_out()
	4.3.3.12 opus_repacketizer_out_range()

	4.4 Error codes
	4.4.1 Detailed Description
	4.4.2 Macro Definition Documentation
	4.4.2.1 OPUS_ALLOC_FAIL
	4.4.2.2 OPUS_BAD_ARG
	4.4.2.3 OPUS_BUFFER_TOO_SMALL
	4.4.2.4 OPUS_INTERNAL_ERROR
	4.4.2.5 OPUS_INVALID_PACKET
	4.4.2.6 OPUS_INVALID_STATE
	4.4.2.7 OPUS_OK
	4.4.2.8 OPUS_UNIMPLEMENTED

	4.5 Pre-defined values for CTL interface
	4.5.1 Detailed Description
	4.5.2 Macro Definition Documentation
	4.5.2.1 OPUS_APPLICATION_AUDIO
	4.5.2.2 OPUS_APPLICATION_RESTRICTED_CELT
	4.5.2.3 OPUS_APPLICATION_RESTRICTED_LOWDELAY
	4.5.2.4 OPUS_APPLICATION_RESTRICTED_SILK
	4.5.2.5 OPUS_APPLICATION_VOIP
	4.5.2.6 OPUS_AUTO
	4.5.2.7 OPUS_BANDWIDTH_FULLBAND
	4.5.2.8 OPUS_BANDWIDTH_MEDIUMBAND
	4.5.2.9 OPUS_BANDWIDTH_NARROWBAND
	4.5.2.10 OPUS_BANDWIDTH_SUPERWIDEBAND
	4.5.2.11 OPUS_BANDWIDTH_WIDEBAND
	4.5.2.12 OPUS_BITRATE_MAX
	4.5.2.13 OPUS_FRAMESIZE_100_MS
	4.5.2.14 OPUS_FRAMESIZE_10_MS
	4.5.2.15 OPUS_FRAMESIZE_120_MS
	4.5.2.16 OPUS_FRAMESIZE_20_MS
	4.5.2.17 OPUS_FRAMESIZE_2_5_MS
	4.5.2.18 OPUS_FRAMESIZE_40_MS
	4.5.2.19 OPUS_FRAMESIZE_5_MS
	4.5.2.20 OPUS_FRAMESIZE_60_MS
	4.5.2.21 OPUS_FRAMESIZE_80_MS
	4.5.2.22 OPUS_FRAMESIZE_ARG
	4.5.2.23 OPUS_SIGNAL_MUSIC
	4.5.2.24 OPUS_SIGNAL_VOICE

	4.6 Encoder related CTLs
	4.6.1 Detailed Description
	4.6.2 Macro Definition Documentation
	4.6.2.1 OPUS_GET_APPLICATION
	4.6.2.2 OPUS_GET_BITRATE
	4.6.2.3 OPUS_GET_COMPLEXITY
	4.6.2.4 OPUS_GET_DRED_DURATION
	4.6.2.5 OPUS_GET_DTX
	4.6.2.6 OPUS_GET_EXPERT_FRAME_DURATION
	4.6.2.7 OPUS_GET_FORCE_CHANNELS
	4.6.2.8 OPUS_GET_INBAND_FEC
	4.6.2.9 OPUS_GET_LOOKAHEAD
	4.6.2.10 OPUS_GET_LSB_DEPTH
	4.6.2.11 OPUS_GET_MAX_BANDWIDTH
	4.6.2.12 OPUS_GET_PACKET_LOSS_PERC
	4.6.2.13 OPUS_GET_PREDICTION_DISABLED
	4.6.2.14 OPUS_GET_QEXT
	4.6.2.15 OPUS_GET_SIGNAL
	4.6.2.16 OPUS_GET_VBR
	4.6.2.17 OPUS_GET_VBR_CONSTRAINT
	4.6.2.18 OPUS_SET_APPLICATION
	4.6.2.19 OPUS_SET_BANDWIDTH
	4.6.2.20 OPUS_SET_BITRATE
	4.6.2.21 OPUS_SET_COMPLEXITY
	4.6.2.22 OPUS_SET_DNN_BLOB
	4.6.2.23 OPUS_SET_DRED_DURATION
	4.6.2.24 OPUS_SET_DTX
	4.6.2.25 OPUS_SET_EXPERT_FRAME_DURATION
	4.6.2.26 OPUS_SET_FORCE_CHANNELS
	4.6.2.27 OPUS_SET_INBAND_FEC
	4.6.2.28 OPUS_SET_LSB_DEPTH
	4.6.2.29 OPUS_SET_MAX_BANDWIDTH
	4.6.2.30 OPUS_SET_PACKET_LOSS_PERC
	4.6.2.31 OPUS_SET_PREDICTION_DISABLED
	4.6.2.32 OPUS_SET_QEXT
	4.6.2.33 OPUS_SET_SIGNAL
	4.6.2.34 OPUS_SET_VBR
	4.6.2.35 OPUS_SET_VBR_CONSTRAINT

	4.7 Generic CTLs
	4.7.1 Detailed Description
	4.7.2 Macro Definition Documentation
	4.7.2.1 OPUS_GET_BANDWIDTH
	4.7.2.2 OPUS_GET_FINAL_RANGE
	4.7.2.3 OPUS_GET_IN_DTX
	4.7.2.4 OPUS_GET_PHASE_INVERSION_DISABLED
	4.7.2.5 OPUS_GET_SAMPLE_RATE
	4.7.2.6 OPUS_RESET_STATE
	4.7.2.7 OPUS_SET_PHASE_INVERSION_DISABLED

	4.8 Decoder related CTLs
	4.8.1 Detailed Description
	4.8.2 Macro Definition Documentation
	4.8.2.1 OPUS_GET_GAIN
	4.8.2.2 OPUS_GET_IGNORE_EXTENSIONS
	4.8.2.3 OPUS_GET_LAST_PACKET_DURATION
	4.8.2.4 OPUS_GET_OSCE_BWE
	4.8.2.5 OPUS_GET_PITCH
	4.8.2.6 OPUS_SET_GAIN
	4.8.2.7 OPUS_SET_IGNORE_EXTENSIONS
	4.8.2.8 OPUS_SET_OSCE_BWE

	4.9 Opus library information functions
	4.9.1 Detailed Description
	4.9.2 Function Documentation
	4.9.2.1 opus_get_version_string()
	4.9.2.2 opus_strerror()

	4.10 Multistream specific encoder and decoder CTLs
	4.10.1 Detailed Description
	4.10.2 Macro Definition Documentation
	4.10.2.1 OPUS_MULTISTREAM_GET_DECODER_STATE
	4.10.2.2 OPUS_MULTISTREAM_GET_ENCODER_STATE

	4.11 Opus Multistream API
	4.11.1 Detailed Description
	4.11.2 Typedef Documentation
	4.11.2.1 OpusMSDecoder
	4.11.2.2 OpusMSEncoder

	4.11.3 Function Documentation
	4.11.3.1 opus_multistream_decode()
	4.11.3.2 opus_multistream_decode24()
	4.11.3.3 opus_multistream_decode_float()
	4.11.3.4 opus_multistream_decoder_create()
	4.11.3.5 opus_multistream_decoder_ctl()
	4.11.3.6 opus_multistream_decoder_destroy()
	4.11.3.7 opus_multistream_decoder_get_size()
	4.11.3.8 opus_multistream_decoder_init()
	4.11.3.9 opus_multistream_encode()
	4.11.3.10 opus_multistream_encode24()
	4.11.3.11 opus_multistream_encode_float()
	4.11.3.12 opus_multistream_encoder_create()
	4.11.3.13 opus_multistream_encoder_ctl()
	4.11.3.14 opus_multistream_encoder_destroy()
	4.11.3.15 opus_multistream_encoder_get_size()
	4.11.3.16 opus_multistream_encoder_init()
	4.11.3.17 opus_multistream_surround_encoder_create()
	4.11.3.18 opus_multistream_surround_encoder_get_size()
	4.11.3.19 opus_multistream_surround_encoder_init()

	4.12 Opus Custom
	4.12.1 Detailed Description
	4.12.2 Typedef Documentation
	4.12.2.1 OpusCustomDecoder
	4.12.2.2 OpusCustomEncoder
	4.12.2.3 OpusCustomMode

	4.12.3 Function Documentation
	4.12.3.1 opus_custom_decode()
	4.12.3.2 opus_custom_decode24()
	4.12.3.3 opus_custom_decode_float()
	4.12.3.4 opus_custom_decoder_create()
	4.12.3.5 opus_custom_decoder_ctl()
	4.12.3.6 opus_custom_decoder_destroy()
	4.12.3.7 opus_custom_decoder_get_size()
	4.12.3.8 opus_custom_decoder_init()
	4.12.3.9 opus_custom_encode()
	4.12.3.10 opus_custom_encode24()
	4.12.3.11 opus_custom_encode_float()
	4.12.3.12 opus_custom_encoder_create()
	4.12.3.13 opus_custom_encoder_ctl()
	4.12.3.14 opus_custom_encoder_destroy()
	4.12.3.15 opus_custom_encoder_get_size()
	4.12.3.16 opus_custom_mode_create()
	4.12.3.17 opus_custom_mode_destroy()

	5 File Documentation
	5.1 opus.h File Reference
	5.1.1 Detailed Description

	5.2 opus.h
	5.3 opus_custom.h File Reference
	5.3.1 Detailed Description
	5.3.2 Macro Definition Documentation
	5.3.2.1 OPUS_CUSTOM_EXPORT
	5.3.2.2 OPUS_CUSTOM_EXPORT_STATIC

	5.4 opus_custom.h
	5.5 opus_defines.h File Reference
	5.5.1 Detailed Description

	5.6 opus_defines.h
	5.7 opus_multistream.h File Reference
	5.7.1 Detailed Description

	5.8 opus_multistream.h
	5.9 opus_types.h File Reference
	5.9.1 Detailed Description
	5.9.2 Macro Definition Documentation
	5.9.2.1 opus_int
	5.9.2.2 opus_int64
	5.9.2.3 opus_int8
	5.9.2.4 opus_uint
	5.9.2.5 opus_uint64
	5.9.2.6 opus_uint8

	5.9.3 Typedef Documentation
	5.9.3.1 opus_int16
	5.9.3.2 opus_int32
	5.9.3.3 opus_uint16
	5.9.3.4 opus_uint32

	5.10 opus_types.h

	Index

